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Abstract. We give an explicit formula for the proton decay rate in the minimal renormalizable super-
symmetric (SUSY) SO(10) model. In this model, the Higgs fields consist of the 10 and 126 SO(10)
representations in the Yukawa interactions with matter and of the 10, 126, 126, and 210 representations
in the Higgs potential. We present all the mass matrices for the Higgs fields contained in this minimal
SUSY SO(10) model. Finally, we discuss the threshold effects of these Higgs fields on the gauge coupling

unification.

PACS. 12.10.-g, 12.10.Dm, 12.10.Kt

1 Introduction

Proton decay would be a smoking gun signature for grand
unified theories (GUTSs). Unfortunately, no such signal has
been seen. In fact, very strong experimental limits have
been set for this process, placing the minimal GUTSs in a
very precarious position. SuperKamiokande (SuperK) has
set a lower limit on the proton lifetime in the channel
p — K17 as follows:

7(p — KT0) > 2.2 x 103 years, (1)

at the 90% confidence level [1]. This has already placed
stringent constraints on SU(5). In fact, the minimal renor-
malizable SUSY SU(5) model is almost absolutely ex-
cluded [2].} Thus realistic unified model builders must se-
riously consider the proton lifetime constraints.

Now, SO(10) GUTs have been mainly discussed in con-
nection with the neutrino oscillations since this part re-
veals the physics beyond the standard model. In this con-
nection, SO(10) GUTs have some advantages over SU(5)
GUTs. One of them is that they incorporate the right-
handed neutrinos as member of the 16 dimensional spinor
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L If we take some textures of the mass matrices for fermions
and sfermions, we may get a safe region for the proton lifetime
in a minimal renormalizable SUSY SU(5) model [3].
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representation together with the other standard model
fermions and provide a natural explanation of the small-
ness of the neutrino masses through the seesaw mecha-
nism [4]. In this paper, we consider the minimal renor-
malizable SUSY SO(10) model. This model contains two
Higgs fields, 10 and 126, in the Yukawa interactions with
matter [5,6]. This is a minimal model in the sense that
it contains only the renormalizable operators at the GUT
scale and it has minimal contents of the Higgs fields com-
patible with the low-energy experimental data. If we relax
the renormalizability at the GUT scale, the different min-
imal SO(10) models may also possibly be considered [7,
8]. In this paper, we restrict our arguments within the
renormalizable theory at the GUT scale and use the word
“minimal” in this restricted sense. As was shown in [5,
6], this theory is highly predictive. However, recent data
[9,10] showed that one of our predictions, the neutrino
mass square ratio, is out of the 3¢ allowed region. How-
ever if we change very slightly the remaining parameter we
can improve the data fitting. Further, incorporating sys-
tematically and exhaustively the errors of the input data
(quark masses, CKM mixing angles etc.), we can improve
the data fitting (to within 30 as a whole [11]) without
changing the model and the seesaw type. Therefore, the
minimal model cannot be considered invalid. However, the
development of GUTs and rich experimental data drive us
to a new stage of precision calculations. That is, we must
include not only the uncertainties of the input data but
also threshold corrections precisely. In order to investigate
the proton decay rate and the gauge coupling unification
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in a precise way, we have to determine all the mass spectra
of the Higgs fields in terms of the parameters presented in
this model. This is a very complicated task itself and is the
main motivation of this work. Even in the minimal model,
there are many free parameters. So, in a practical analysis
of the proton decay rate and also the gauge coupling uni-
fication, one has to reduce the number of free parameters.
That means that we should consider the smallest number
of Higgs contents. Thus, we introduce our Higgs system
as the simplest one, {10 & 126 & 126 ¢ 210}. The mean-
ing of the introduction of these representations will be re-
vealed in the next section. Since our results are the general
ones for the “minimal” renormalizable SO(10) models, it
can be applicable to any parameter regions. For instance,
even if we fix the type of Yukawa couplings in the mat-
ter sector and also the Higgs potential, the result is not
unique. If we restrict the values of the parameters in the
superpotential to some restricted region, we may get the
two different types of seesaw mechanisms, type-I [5,6] or
type-II [12]. In this paper, we do not explicitly explain the
way to save the model from the proton decay rate of Su-
perK. Our main purpose in this paper is to produce all the
mass spectra of the Higgs fields including all the Clebsch—
Gordan (CG) coefficients and to propose a general for-
mulation which is applicable to any parameter choices. In
these applications, our theory might be found to be insuf-
ficient. Even if this is the case, our theory is very useful
for a more elaborate theory.

This paper is organized as follows. In Sect. 2, we give
the explicit form of the superpotential in our model. In
Sect. 3, a very brief description of the symmetry break-
ing procedure and the decomposition of the original Higgs
fields into the minimal supersymmetric standard model
(MSSM) are given. In Sect. 4, using these techniques, we
can get the mass matrices for a variety of fields, especially
for the would-be Nambu-Goldstone (NG) modes. Then
we can check that the appropriate NG modes do appear
in the mass spectra. In Sect. 5, we check the mass matrices
for the electroweak Higgs doublets and consider the condi-
tions for two Higgs doublets to remain light. In Sect. 6, we
derive the formulae for the evaluation of the proton decay
rate. In Sect. 7, we finally check the remaining mass ma-
trices and the effects of the threshold corrections on the
gauge coupling unification. In the appendices, we list all
the coefficients of dimension-five and -six operators, which
are relevant to proton decay. The applications to a more
elaborate model will be given in a separate publication.

2 Minimal SO(10) GUT

In this section, we explain the minimal renormalizable
SUSY SO(10) model. As mentioned in the introduction, it
contains two Higgs fields in the Yukawa interactions with
matter [5,6]. In the SO(10) models, the left- and right-
handed fermions in a given ith generation are assigned
to a single irreducible representation 16; = W;. Since
16 ®16 = 1096 120 4 126, the fermion masses are gener-
ated when the Higgs fields of the 10, 120, and 126 dimen-
sional representations develop non-vanishing vacuum ex-
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pectation values (VEVs). The use of only one Higgs field,
10 in the Yukawa interactions with matter, is obviously
ruled out for the description of realistic quark and lepton
mass matrices. Furthermore, the use of the 126 dimen-
sional Higgs field has desirable properties for providing
masses of the right-handed Majorana neutrinos. Also it
was found that 10 (= H) and 126 (= A) are suitable for
the mass matrices since they satisfy the Georgi—Jarlskog
relation. In order to preserve supersymmetry, we must also
include the Higgs field A of the 126 dimensional represen-
tation. The Higgs field @ of the 210 dimensional represen-
tation is introduced to break the SO(10) gauge symmetry
[13] and to make the Higgs doublets included in H and A
mix [5]. Then the minimal Yukawa coupling becomes

Wy = YW, HU; + V3,0, AP;, (2)
and the minimal Higgs superpotential is [13-15]

W = m1®P? + moAA + mg H?
+ M PP+ N PAA + N3PAH + \PAH.  (3)

The interactions of 210, 126, 126 and 10 lead to some
complexities in decomposing the GUT representations to
the MSSM and in getting the low-energy mass spectra.
Particularly, the CG coefficients corresponding to the de-
compositions of SO(10) — SU(3)¢ x SU(2)1, x U(1)y have
to be found. This problem was first attacked by Xiao-Gang
He and one of the present authors (S.M.) [16] and further
by Lee [14]. But they did not present the explicit form of
the mass matrices for a variety of Higgs fields and also
did not perform a formulation of the proton lifetime anal-
ysis. In this paper we will complete that program in the
framework of our minimal SO(10) model.

3 Symmetry breaking

In order to discuss the symmetry breaking pattern, here
we briefly summarize our conventions for the SO(10) in-
dices. The SO(10) indices o = 1,2,---,9,0 are divided
into two parts, a = 1,2, 3,4 for SO(4) = SU(2) x SU(2)
and o = 5,6,7,89,0 for SO(6) = SU(4). For the
SO(10) — SU(3)¢ x SU(2)L, x U(1)y decompositions it
is very useful to define a “Y diagonal basis”: 1’ = 1 + 2i,
9 —1-92i,3 =3+4i,4 =3—4i,5 =5+6i, 6/ =5 — 6i,
T =T+8,8=7-8,9=9+0i,0 =9—-0i (up to a
normalization factor, 1/v/2). Hereafter we use this Y di-
agonal basis and omit the primes: The 10 dimensional
irreducible representation, H, is spanned by the states
a=1,2,---,9,0. The 210 dimensional irreducible repre-
sentation, @ and the 126 & 126 dimensional reducible rep-
resentation A+ A, are spanned by the antisymmetric ten-
sors of the fourth rank (av¢) and the antisymmetric ten-
sors of the fifth rank (a3vde), respectively. Here and below
the bracket (- --) represents the total anti-symmetrization
of the indices within the bracket.

The Higgs fields of the minimal SO(10) model contain
five directions which are singlets under SU(3)¢c x SU(2)1, x
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U(1)y. The corresponding VEVs are defined by

—~

P) = Zf/)i $i (A) =vrg, (A) =TroR, (4)

where g/b; (i =1,2,3) are included in 210,

~ 1

= (1234), 5
~ 1

= ——— (5678 4+ 5690 + 7890) , 6
%= ) o
~ 1
b3 = — (1256 + 1278 + 1290

V144
+ +3456 + 3478 + 3490) , (7)

TR is in 126,

and vR is in 126,

Notice that

Gi- by =i (i, =1,2,3),
(10)

—

Ur-Ur =URr-Ur =0, Ur - VR = 1.

Due to the D-flatness condition the absolute values of the
VEVs, g and vy are equal,

R = |vgl. (11)

Now we write down the VEV conditions which preserve
supersymmetry, with respect to the directions ¢1, @2, @3,
and TR, respectively:

2mi¢y + 3\ % VAL ST (12)
6v/6 10v/6 ’
¢3 +¢§) UR VR _
2m1¢s + 3N\ ( 9\/5 + Ao 10\/5 =0, (13)
D103 | V20203 VR " UR
2m1¢3—|—3)\1<3\/6+ 9 >+>\2 10 —07
(14)
®1 b2 b3 B

Here we consider only the solutions with |vgr| # 0. Elim-
inating vgr - TR, ¢1 and ¢o from (12)—(15), one obtains a
fourth-order equation in ¢,

<¢3+MQ> (867 — 15 My62 + 14 M2y — 3

+(¢3 — M) Mz} = (16)
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where

(17)

M1—12(/\1> M2:60<)\2>

Any solution of the cubic equation in ¢3 is accompanied
by the solutions

o = 92 (Mi—56%) (M?-543)
PTV6 My —gs)?
2 42
by = — 1 (M3 —2Mids — ¢3) (1)

V2 (M — ¢3) ’
- 5( )¢3<M13¢3>(M%+¢§)
RTUR = o (My — ¢3)? '

The linear term gives the solution of the fourth-order

equation (16) which is very simple, ¢35 = —6 (%"‘)
It leads to ¢; = —V6 (T—;), by = —3V2 (T—;) and
Vo) = V60 (52) \/2 () -3 (&) This solu-

tion preserves the SU(5) symmetry. Therefore, it is physi-
cally not interesting. The cubic term solutions lead to the
true SU(3)¢ x SU(2), x U(1)y symmetry.

4 Would-be NG bosons

In order to check the number of NG modes we write down
the mass matrices for the Higgs(ino) fields which trans-
mute the non-MSSM SO(10) gauge fields into very mas-
sive gauge fields. At first, we list the quantum numbers of
the would-be NG modes under SU(3)¢ x SU(2);, x U(1)y

() [B3:2.3) (5.2,

( gl

[(1,1,0)].

The total number of NG degrees of freedom is 12 +
12 + 6 + 2 + 1 = 33. In the following subsections we give
explicit expressions for the mass matrices and check that
their determinants are zero. The mass matrices receive
contributions from the F' terms in the Higgs potential.
The matrix elements of the mass matrices comprise the
CG coefficients which appear as coefficients of the triple
products of the SU(3)¢ x SU(2)r, x U(1)y components of
the Higgs superfields. For the calculation of the CG co-
efficients, one must first find the explicit expressions for
the SU(3)¢ x SU(2)L, x U(1)y components of the Higgs
superfields. The complete tables of the CG coefficients of
a more general Higgs sector are given in a separate publi-
cation [17] and we will list only the mass matrices in this
paper.

Note that the mass matrix for every irreducible repre-
sentation under SU(3)¢c x SU(2)r, x U(1)y with Y # 0 and
the mass matrix for the corresponding complex conjugate
representation are equal up to transposition. Therefore,
only one of the two accompanied mass matrices is listed.
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Of course, when enumerating the total degrees of freedom,
one has to be careful to include all the mass eigenvalues
(472 in total). The mass matrices define the mass part
of the superpotential as a bilinear form of the fields and
corresponding complex conjugate fields. The basis for the
mass matrix is defined as a row of the fields multiplying
the mass matrix form the left.

4.1((3,2,8) @ (3,2, —3)]
In the basis {@ggﬁ;g),é((ff;f)) (here and hereafter

the lower indices indicate SU(4)¢ x SU(2)r, x SU(2)gr and
the upper SU(3)¢ x SU(2)r, x U(1)y in the case of double

indices), the mass matrix is written as

: A1é3
2my — >\16¢73 2103
( A1¢3 2my + )E))l\é% _ Mgs :
3v2 1T 33 6

The determinant is indeed zero assuming the VEV condi-
tions, (12)—(15).

(19)

4.2 [(3,2,-1) @ (3,2, 1)]

. (3.2,1) .(823%) ,(321) —(321)
In the basis {@(6’2726) ,@(1072?2),A(1572?2),A(1572?2) , the

mass matrix is written as

2mq + 7)\16(;53 21\%5
A1¢3 A1¢2 A1¢3
2my + + =5
3v2 6
_ X[ﬁ 3>t£1n (20)
10v3 5v6
0 0
A2v
0 2
0 —22R
0 mo + §O2\¢/2: + )\2¢3
me + 55 % 0

The determinant is also equal zero assuming the VEV
conditions.

43[(3,1,-2) @ (3,1, 2)]

[ (518) S(503) <(5.1.3)
In the basis {¢(15 11) €Z5(15’1?3), A(10,1,33) , the mass ma-
trix is written as
A1¢o A1¢3
WY 22
193 1P1 192
32 2my + =7+ FE (21)
7}\2’()1:{ 7)\2UR.
103 5v6
A2UR
103
A2UR
5v6

A2 A2¢2
m2 + 1076 + s0vz T

The determinant is also equal zero assuming the VEV
conditions.

)\2¢3
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4.4 [(1,1,1) & (1,1, -1)]

In the basis {@85111)3)7 AEiT)lll)z%) }, the mass matrix is writ-
ten as
2mq + A1¢1 + V2X\i¢s szn
( \/§2ﬁ ° me + >\2¢1 + A2 pa . (22)
710 27T 70v6 " 10v2

The determinant is also equal zero assuming the VEV
conditions.

4.5 [(1,1,0)]

In the basis

(1,1,0) £(1,1,0) (1,1,00 —#(1,1,0) (1,1,0)
{@(1 1,1) ¢(15,1,1)7 ¢(15,1,3)7 A(10,173)’ A(ﬁ,l,a)}’
the mass matrix is written as
2m1 0
0 2my + \/§/§1¢2
A1g3 2
\1/63 f31¢>3 (23)
_ A2VR _ A2UR
106 10v2
__A2UR _ A2VR
10v6 10v2
A1s A2TR  _ A2UR
V6 15\/ 102\/5
\/§A1¢3 )\QUR _ >\2'UR
Y ¢3 V2Xi 9 %\Oi %\Oﬂ
2m1+%+ 312 —ﬁgr‘ _218R
—2z2tm ed 0
— 2288 0 ed
Here ed = mo+ Ao (10\[ + 10\[ + ‘fg) is nothing but the

left-hand side of (15) divided by vg, and (23) has one zero
eigenvalue.

5 Electroweak Higgs doublet

In the standard picture of the electroweak symmetry
breaking, we have the Higgs doublets which give masses
to the matter. These masses should be less than or equal
to the electroweak scale. Since we approximate the elec-
troweak scale by zero, we must impose a constraint that
the mass matrix should have one zero eigenvalue.

We define

10 _ (123) 5 _ #(1.23)
H, :H(1222) s Au :A(1522)7
_A(123) o o(123)
AU_A(L,, 2),Q5 :(15(10 2" (24)
and
10 _ (12-3) 5 _ #(1.2-3)
Hy" = Hy 55" Ad=A(1529) >
_ a(12-3) _ (12.-3)
Ad = A(15,272) 5 @d = ¢(1072,2) . (25)
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In the basis {Hio, Ay, Ay, (Pu}, the mass matrix is written
as

Mdoublct (26)
2ms Asda _ As¢s
Aa¢2 Ass \/ﬁ2¢2 2\/5)\2(153
= ‘432 Qf me+ 55 T T30
Vo 2\/5 0
3VR 0
V5
_Aad2 g3 AUR
V10 25 NG
0 0
mat 2% A M
Azlga 2my + )\\1/%2 + )\12¢3

The corresponding mass terms of the superpotential read

Wm = (Hzlloa Zuv Aua qu) Mdoublet (Héoa AdaZda Qsd)T
(27)
The requirement of the existence of a zero mode leads to
the following condition:

det Maoublet = 0. (28)

A2dz  Azgd3
15v/2 30
obtain a special solution to (28), while it keeps a desirable
vacuum and it does not produce any additional massless
fields. For instance, for ¢1/M; = —0.06077, ¢o/M; =
—0.5949, ¢3/M; = 0.1238, vpUR/M? = 0.1715\1 /)Xo
with the condition My/M; = 1.930, both the condition
below (28) and (16) are satisfied. However, we proceed our
arguments hereafter without using this special solution.

We can diagonalize the mass matrix, Myoupblet, by a
bi-unitary transformation.

For instance, in case of A3 = 0, mq +

0, we

U* Maoubler V' = diag(0, My, My, M3). (29)
Then the mass eigenstates are written as
(Huv hqlp hzzu hi) = (H;O,ZU,AU,@u) UT»
(Hg, hjy, b3, 03) = (H°, Ag, Ag, @) V. (30)

The representations 45 and /or 54, and higher dimensional
operators, are not included in our minimal model. There-
fore, we must set the “doublet—triplet splittings” by hand
as (28).

By making the inverse transformation of (30), the fol-
lowing expressions are obtained:

HiozauHu'i'"'a

Héozade_’_...’

Ag=pqHa+ -, (31)

where “+ ---” represent the heavy Higgs fields, hfu g (=
1,2, 3) which are integrated out when considering the low-
energy effective superpotential.

Precisely, we can read off from (30) that
oy = (U1, Bu= (U2,
ag = V)1, Ba= V" )s. (32)
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Using the two pairs of Higgs doublets, H, 53{ and A, 4, the
Yukawa couplings of (2) are rewritten as

Wy = uj (Yll(g H," + legs )

+d0( + Y Ad)q
+ ¢ (Vi HLO = 3vi5, 4, ) ¢
e; (vif 7YY — 34 2a) 4

+ vf (Vifvr) v, (33)

By using (31), we obtain the low-energy effective superpo-

tential which is described by only the light Higgs doublets
H, and Hyg,

Wesr = uj ( WY1 + ﬁuyf%) Hy qj
+df (ade + ﬂdeG) Hgyq;
+ 5 (e on 36,Y1%5) Hut;
+ ¢ (aa¥i] = 38 ) Haty
Vg (leGUR) VS + et HyHy. (34)
Here we have assumed that some mechanism, like the
Giudice-Masiero mechanism [18] in supergravity, may

produce the effective p term, peg, for the light Higgs dou-
blets.

6 Proton decay

After the symmetry breaking from SO(10) to SU(3)¢ x
SU(2)1, x U(1)y, the generic Yukawa interactions between
the matter fields and the color triplet Higgs fields are given

by

l>\

\_/'ﬂ\

Wy = Y{3 Hy (a5 + u§dS) + Y36 A7 (q:l; + uids)

qiq; + ujej + divj

i 1

qiq; + ufe? + dfyj

i = (1
+ Y136 Ar (2

N———

+ Yige A (uGeS + divs) . (35)
Here we have defined
— (§7111) (37 ’ ) A (3 1
Hy = H(G 1 :f) , Hr = H(6 1 1)3 » Ap = A(G,l,l)
- _ —=(31,—- — —(3,1,— 1)
Ar = A(G 1 1) AT = A(10 1 33) (36)
For later use we define
1, (3,1 , (3.1
AT—A(eﬁ)’AT—A(eu) A A(1013),
(3,1,3) _ 5(31,-3)
b 45(15 1) Pr = Q5(15 13 - (37)
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In the basis {HT7 A, A, D, A/T}’ the mass matrix
reads

Mtriplet
2ms _ AP Mo
CAséy _ dagy VIO VB30
_ YL 1¢P2
A3VR __A2UR
V5 10V/3
V2303 Q23
V15 15v2
_ A3 + Asge  ATR  _ V2Xids
V10 V30 N V15
0 _ A2UR A2¢3
10V3 152
mo 0 0 )
0 M SR
0 __A2UR _
5v6 M55
_ A A A —
where Tys = 2mg + \1/‘%1 3”\}%2 + % and g5 =
ma + 2221 4 2292 The corresponding mass terms of the

10v6  30v2°
superpotential read

Won = (Hr, A, A, @7, A7)

T
— —
X Miriplet (HTaAT>AT7¢T7AT) (39)
Now we integrate out all the color triplet Higgs fields in
order to obtain the effective dimension-five operators re-
lated to the proton decay.? We first integrate out the color
triplet Higgs fields, Ar and @,

a1
bx| D
A1¢1 A1 ¢ 219 _ A3 Asd i
[ (o 2 R By (i M) iy |
mg')\:‘/%nHT*mQ‘i\OQ\U/%AT*mQ'E%{A%
where

D=my- (2m1 A U QMI)?’) . (40)

V6 3v2 3

Putting this into the original mass terms of the superpo-
tential (39), we can obtain the following mass terms for
the color triplet Higgs fields:

Wit = (Hp, Az, Af) M,

T
X —/
triplet (HT7 AT, AT) . (41)
Here the explicit forms of the elements of this mass matrix,
Mfrfifpm = {mij}, are given as follows:

My = 2ms — 1 [(_ g1 n )\4¢2)
D v10 v 30
2 The integration procedure presented here is equivalent to

the integration procedure after the diagonalization of the full
triplet 5 X 5 matrix.
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A1¢1 )\1¢2+2/\1¢3)

V6 3V2 3
(_>\3¢1 n >\3¢2>
V10 V30

A3UR A4UR

Vs s ] |

_ Mo Mgy 1 vr
V10 V30 D 10v3
_ V2463

X

<2m1 +

X

1 )\g”UR
V5 D
_ A1 Asda 1 Asum
VIO V30 D 5
1 Xovgr Ao UR
™D 10v3 " 103
A2TR

AUR
\/S )
A2UR

T10V3

mo1 = Mo

ma2

mao3 =

_\/5/\3¢3 1 Azur - A2TR
VIE D V5 56
_ A2UR

BTV A SR TV RV
Aad1 | Moo

10v/6  30v2

1 MR AQUR

D 7 “Mmg - V6

Moreover, integrating out the color triplet Higgs field A/T’
we obtain the effective Yukawa interactions between the
matter fields and the color triplet Higgs fields as

Wy = Y] Hy (qil; +u§dS) + Y36 D (g5t + uids)

msz1 =

m33 = Mo +

(42)

ij o L
+ Y} Hr 544

m31

+ (Y;g e

Vih) i (uces + ;)
ij x 1
+ Y126 AT §Qqu
m32 1 A c c c.C
+ (1 — m33> Yise Ap (ufe§ + divs) . (43)

Then the effective mass terms for the remaining color
triplet Higgs fields are written as

Ws{f = HT (aHT + bZT) +ZT (CHT + dZT)

— H
= (HTV AT) MT (AT> s (44)
T
where a, b, ¢, d are defined by
_ mis _ mis
a=mi —— - -m31, b=mip— —— - m3y,

mss mss
CEmgl—%”ﬁbgl, dEmQQ—@'mgg. (45)

ms33 m3s3

Combining (43) and (44) leads to the effective dimension-
five interactions after integrating out the remaining color
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triplet Higgs fields [19],

T

545kl + CFM g

ejugdy, (46)

inducing the dangerous proton decay. Here, C', and Cg

are given by the Yukawa coupling matrices at the GUT
scale, Mg,

Yk
15kl 7 7 —
CLJ (MG) = (YuJ)a Yﬁs) MTl (Y}g ) ’
126

m32 _
1-—]Y, M,
(1-22) v, ) ory

(47)

mis
o Y1267
ms

Ykl
X .
Y126

Note that

ijkl ij
CRJ (MG) = <Y18

Thus we have

o = (Vi vy) (Abip A7) (?ﬁd ) - (19)
d

We make use of this expressions in order to evaluate the
renormalization group effects on the Wilson coefficients
CPM and Ccy ' Without loss of generality, we can use the
basis where Y,, is real and diagonal,

1
w = ——— diag(my, me, my),

vsin G

with v ~ 174.1 GeV. Since Yy is a symmetric matrix, it
can be described by

(50)

Yd = m VCKM dlag(md7 meg, mb) VCKM7 (51)
by using a unitary matrix
VCKM = eiOél eiozz/\g, eia3>\g VCKM eiﬂz)\3 eiﬁg‘,)\s’ (52)

where A3, A\g are the Gell-Mann matrices and Vg is
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
[20].3

The complete antisymmetry in the color indices re-
quires that the dimension-five operator (46) possesses non-
diagonal flavor indices [21]. As a consequence, the domi-
nant decay mode is p — KT#. This fact implies that the
chargino dressing diagrams dominate over the gluino and
the neutralino dressing diagrams [22].

3 In [6], we set these phases i (i = 1,2,3), B (i = 2,3) to
Z€ero or T.
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In the component form, the dimension-five operators
at the SUSY breaking scale, Mgysy, are written
Ls =C udue)XYz]uXC’i;uLieLj

1

+ C(uude)XYz] QUXquLZeL]

tdue)XYij
+C( ) JuxdyuRleR]

1
C(uude)XYU 5 X'U/YdRzeRJ

+ C(ﬁddl/ XYij NdeLﬂ/L]

v 1~~~
C(ddu VXYij dXdYULzVL]

(weud)XYij ~—
+C} uxeyur;dy;

déun)XYij —~
+C( ) ]deeyuLiuLj

(weud)XYij ~—
+Cx ux ey Ur;idR;

deuu)XYz] —~
+ Ol({ idxeyuRiuRj

n C(dﬁud)XYij(’i‘;(I/];uLidLj

uv 1 1
+ C( vad) XY i 3 uxVydrdy;.

(53)
The coefficients are obtained from the coefficients of the
original dimension-five operators including their renormal-
ization from Mg to Mgysy. Their explicit forms are found
in Appendix A. After the sparticle dressing, we obtain the
following type of dimension-six operators causing nucleon
decays:

1 uaue )t
o2 [C( W (uy,dy;) (uper;)

C(udue)u(

Le =

urdr;)(urer;
+ Cﬁ;{iue ij
C

)
(urLdyi)(urery)

udue )ij ( )
k

urdr;) (URER;

+ uddu)” (urdri)(dujvie)

uddl/)zyk ) )
J
+ Cx (urdri)(dLjvLr)

b ORI g man) | (54)
These operators should be renormalized from Mgysy
to Mz and further to the hadronization scale (fhad)
~ 1GeV. Then the effective four-Fermi Lagrangian is
converted to a hadronic Lagrangian by using the chiral
Lagrangian method [23][24]. Details are given in Appen-
dices B and C.

For the decay mode p — KT, the partial decay rate
is given by the formula

m2 2
K*) = |A(p — K*i7) 2.

mg
(55)
Here m, = 0.938GeV is the proton mass, mg+ =
0.493 GeV is the kaon mass and f; = 0.131GeV is the
pion decay constant.

_ m
F(p—>K+Vi):32:c<1—
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The amplitude A(p — K1) for p — K; reads [25]

uddy 7 uwddy i 2
Alp — Kti7) = {gcﬁjd 211 o cludd >21} ;:;D
(uddv)12i (uddv)12i my
+ {ﬁCLL + aCpy, } 1+ (3F + D)
3mB
+acf ) |1 e g - ). (50
mp

Here mp = 1.150 GeV is an averaged baryon mass, F =
0.44, D = 0.81 are the parameters in terms of which the
octet-baryon axial-vector form factors are expressed, and
«, (B are the hadron matrix elements which are defined by
126]

aur (k) = (0|drurur|p(k)),
Bur, (k) = (OldLurur|p(k)).
The uy, (k) denote the left-handed components of the pro-

ton wave function. It is known that |a| = |8|, and 3 is in
the range [26]

(57)

0.003 GeV?® < 8 < 0.03GeV?. (58)

From recent lattice calculations, one group reported that
[27]

—(0.015 £ 0.001) GeV?,

3 = 0.014 £ 0.001 GeV?>. (59)
But the other group reported the smaller values [28]
—(0.006 + 0.001) GeV?,
4 = 0.007 + 0.001 GeV?>. (60)

A detailed numerical analysis of the proton decay rate is
given in [29].

7 Gauge coupling unification

In general, the gauge coupling unification imposes con-
straints on the mass spectrum of many varieties of Higgs
fields [30]. Our strategy is a generic one in that all of the
dimensionless coefficients should remain of order one to
preserve the perturbative limit and put all the VEVs at
the GUT scale in order to realize the simple gauge cou-
pling unification picture. For the numerical evaluation, we
use the one-loop renormalization group equations (RGEs)
in the DR scheme [31],45

1 1 Cs (Gy)

@ (Mg) o (Mg)|yg 121 (61)

4 DR uses dimensional regularization through dimensional
reduction with modified minimal subtraction.

5 Here we assume, for simplicity, that all the mass eigenvalues
of the Higgs fields are smaller than Mg and all the masses of
the gauge fields lie around M. In the other cases, the formula
becomes quite complicated.
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1 det’ M
¢ ¢
+ 5 | 10g( > +Zb log< rank(M<)> ,

where Cs is the quadratic Casimir operator; Cy (SU(3)) =
3, C5(SU(2)) = 2, C2(U(1)) = 0, and ¢ denotes the
Higgs fields which have the corresponding gauge quan-
tum numbers. M, is its mass matrix and “det”” means
that the determinant should be taken excluding the zero
modes. b; and bf are the 8 function coefficients; b3 = —3,
by =1, by = 3—53, and bf are given in Tables1 and 2. For
a; (Mz) 315, we use the following values:

a3 (Mz) lys = as (Mz), (62)
as (Mz) s = a (Mz) /sin® 0w (Mz) , (63)
o (M) sgs = 2 o (M) / (1= sin? b (M7)) , (64)
with [32]
as (Mz) =0.1172, a(My) =1/128.92,
sin? fw (Mz) = 0.23113. (65)

Excluding the fields which mix with the would-be NG
fields and the fields with SU(3)¢ x SU(2 ) x U(1)y quan-
tum numbers, [(1,27 %) + h.c.] and [( , 1, 3) + h. c] the
massive fields are given as follows.

For the 126 and 126 representation fields, their quan-
tum numbers, the masses and their § function coefficients
are given in Table 1.

For the 210 representation field, their quantum num-
bers, the masses and their § function coefficients are given
in Table 2.

Putting these values into (61), the unification condi-
tion produces two individual equations,

az (Mg) = a2 (Me), (66)
and
Q3 (Mg) = 1 (Mg) . (67)

Setting all VEVs at the GUT scale, ¢1 ~ ¢3 ~ ¢3 ~
|vr| ~ Mg, and the remaining dimensionless coefficients
of order one; we can search whether (66) and (67) have a
solution for Mg below the Planck scale, Mg < Mpianck-
If such a solution exists, it would limit the parameters in
the superpotential (3) to some restricted region.

8 Conclusion

We find the general formulation for the proton decay rate
in the minimal renormalizable SUSY SO(10) models. Us-
ing this generic formulation one can find whether the mini-
mal SUSY SO(10) grand unified theory has been excluded.

Recently, using their Yukawa couplings ((8) and (9)
n [33]), Goh-Mohapatra—Nasri-Ng obtained the allowed
region of (z,y,z) which corresponds to (%7—%7—5) in
our notation. However, they did not discuss the concrete
form of the superpotential and, therefore, compatibilities
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Table 1. The mass matrices and the § function coefficients for 126 and 126

quantum numbers mass matrices, or mass eigenvalues b by b
A2 do A2¢3
(8,2,3) +he <m2 e 23% 4 200 > 12 8 2
(6,3,%) +h.c. my — 3201 — 2202 15 24 2
(6,1,3) +h.c. mg—&—ig—%—%—% 5 0 &
(6,1,2) +h.c. mo + 201 — 2202 4 Aada 5 0 16
(6,1,%) +h.c. ma + ?02% - ;gjg 5 0 %
(3,8,3) + he mQ—jg—%+;g—zg 3 12 ¢
(3,2,7) + hc (m2+35%25 " m+hi_m> 2 3 ®
27T 30v2 20
(3,1,%) +hec. mag + 201 4 2202 Aada 0o
o +he w85 .
(1,1,2) + hec my 4 2291 4 2202 _ 22gs o o %
Table 2. The mass matrices and the 8 function coefficients for 210
quantum numbers mass matrices, or mass eigenvalues bg bg bg
(8,3,0) 2my — gL — %2 9 16 0
(8,1,1) + h.c. 2m1—|—>‘1—\;§1¢—§1—f§2 . 6 0 =
(87 1, 0) < 2m1A1_¢331\/§2 2 ﬁlf A1d2 ) 3 0 0
52 Mt TE T vz
(6,2,2) +h.c. 2my — 392 — Ada 10 10
(6,2,%) +hec. 2my — 3192 4 Age 10 z
(3,3,2) +h.c. 2my — AEL 4 2102 30 12 2
(3,1,5) +hec. 2my 4 2L 4 2% Puds 1 0 10
(1,3,0) 2my — Mg 4 V2ada 0 0
(1,2,%) + he 2my + 222 — Aigs 0o 1 Z

of their superpotential with the other constraints are not
clear in their paper. Also, as we have mentioned above,
there appears a non-zero x value even without the 54 di-
mensional Higgs field. Further, besides the color triplet
Higgs fields, there is a much richer Higgs particle con-
tents. These additional Higgs fields may cause a pathology
of the gauge coupling unification. This paper presents a
relationship among these comprehensive but tightly con-
nected problems.
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Appendix A: Dimension-five operators

In this appendix, we list the explicit form of the various
interaction coefficients.

We use the following notation for the mixing matri-
ces which diagonalize the squark, slepton mass-squared
matrices and chargino, neutralino mass matrices. Squark,
slepton mass-squared matrix M2, chargino and neutralino

mass matrices M¢c and My are diagonalized by the uni-
tary matrices U P Oy, Ogr and Oy, respectively. We have
~M2Uldi 2 2
7 Mf de1ag(mfl, ....,mfﬁ),
Or M¢ O}:diag(mi; s M ),
Oy My O}L\,diag(m%(l) ,m (A1)

,Mso m~2).

X3 X9 Ty

For the dimension-five operators, we have the following

expressions:®
C}Eﬂ,due)XYij = ngk]l(Us)Xk(Ug)w, (A.2)

5 We use a notation for an antisymmetric tensor, AR =
Akl _ pRjil
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C(ﬁﬂde)XYz] C [kjllm
L =

Cf({ﬁciue)Xng = (C*kl]l

"(UR) xk(Ug)yi(Verm)im, — (A.3)
= G (U2) x kr3(U3)vara (Ad)

Cf({ﬂﬂde)XYz] = ( *kl]z . ;{zl]k) Uﬂ*’)X7k+3(Uﬁ*)Y,l+37(A-5)
Cﬁﬂddu)XYu (Cmnkl lknm)(Ui)Xk(Ug)Yl
x (Vexm)im (UMNS ) jins (A.6)
LY = (O = O (U) <k U byt Vaasin,
(A7)
CLFDXYT = IR () (U2 )yt (Vo) jms (A.8)
C£déu'u)XY1j = C[zl]] ( d)Xk(Ug*)Yl, (A9)
C}({léud)XYz] = (C;;Jklz _ C;ijh)(Ua*)X,k+3(Ug)Y,l+37
(A.10)
C}({iéuu)XYij = (C;i]kh B Clziklj)(U&f)X7k+3(Ug)Y,l+3a
(A11)
CLT Y = (O — O (U xk (U )y (Verad) jm
(A.12)
CI = (ot — e (U3) xk(US) vi(Vera Jim
X (VCKM)jn (A13)

n (A.6) and (A.7), it should be noticed that the neutri-
nos in the final states should be rotated from the flavor
eigenstates to the mass eigenstates by using the Maki-
Nakagawa—Sakata (MNS) mixing matrix [36], Unmns.

Appendix B: Sparticles interactions
We use the following notation for the quark—gluino—
squark, quark (lepton)-chargino—squark (slepton) and

quark (lepton)-neutralino—squark (slepton) interactions.
(1) quark—gluino—squark interactions:

Lins = —iﬂug[ GHWp, + GR >PR] Gux

—i\/idg[ GO p 4 GRU )PR} gdx +he. (B.1)

(2) quark (lepton)—chargino—squark (slepton) interactions:
Line = ug [CHR P+ CHY Pr| Thdx
+ df {C}é;l()PL + CR(d)PR} XAUX + VCCzA(X PRXAgX
+ e [CALPL + O PR Xix +he. (B.2)

(3) quark (lepton)—neutralino-squark (slepton) interac-
tions:

Lint = ui [N;“;?()PL + N, 4 (u) } XAUX
+ df { 1A§<)PL + NR(d)PR} XAdX + v NzA(X) RXAVX

+ e {N;L‘(;()PL + NR(e)PR] Y4eéx + h.c. (B.3)

Explicitly, we have the following expressions:

Gix = 93(U3) x,i+3 (B.4)
G = g3(U3)xi, (B.5)
G = g3(U2) x4, (B.6)
GR(d) = QB(U ) xk (Vi) ik (B.7)
CHW = gt (Of) a2(US) xs, B.8
iAX g\[MwSlnﬂ( )AQ( d)X ( )
zAg() = { (01)a1(U3) xi
mgq.

+ = 200)a2(Us)xivs B.9
VoM cosﬁ< 1)a2(U7)x, +3} (B.9)

L(d) _ M, *
=9—F7= UZ)xi, B.10
1AX — g\[MwCOSﬂ( )AQ( u)X ( )
CiY = g {-(OR) a1 (U3) xn (B.11)

m
4+ U (OF US Vv i
NI ﬂ< Rei)xin } Vada
zA.l;() = g{—(01)1(U})xk (B.12)
b M (0n)ap(U3) }(U* )
\/EMW COSﬂ L)A2\Vp ) X k+3 MNS )ik
CHY) = g——"%(01) a2(U2) iy B.13
R = 9 e (0D (U (B.13)
ChY = —g {—(O0R) a1 (U3) xi (B.14)
b M (0m) (U2 }<V* )
\/éMW sin 3 R/JA2\V 4 ) X k43 CKM )ik

NEW = _ 9 ) i gy (U«
tAX \/é MW sinﬂ( N)A4( u)X

4
- 3tanew<07v>A1<U;>x,i+3}, (B.15)
N = - O (B0

+ | (O3a+ gt (05| Ui}

NL(d) = _i mg, * .
1AX \[ MW COSﬂ( >A3( d)X’L

2
+ 3tan9w(07v)A1(U§)X,i+3}a (B.17)
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R(d) _ g mq, * *
Niax = /s {W(ON)A3(U,2)X,16+3
1
+ [0+ Sranon03a] @i}
x (Véxm)iks (B.18)
R(v _ g * *
N = =75 (0842 = tan w (05
x (Uz) x k(Usins )ik (B.19)
L(e) — _i Me; % * )
wiY = -2 {03,
2
+ 3ta110w(07\,)A1(U§)X7i+3}, (BZO)
R(e) — _i Me; * * L
NS = -2 e O )xi (B2)

|0+ g tanw O3] Wi}

These expressions are found in [37], but only for the quark
sector. So here we write them explicitly.

Appendix C: Dimension-six operators

For the dimension-six operator, we divide the coefficients
into three parts according to the dressed sparticles,

Cﬁ?ﬁdue)ij _ Ciqﬁdue)ij (~gv) + Cﬁtﬁdue)ij (%O) + (/wI(jidue)ij(5<vj:)7
(C.1)

etc. Then we have the following expressions. These ex-
pressions have the same forms as [25]. However, ours are
different from them in the neutrino sector as was men-
tioned in the end of Appendix A. We have

udue)ij j~
e ) (C.2)
41 (udue) XY 1j ~R(u) ~R(d) m% m%
ux dY
udue)ij , ~
CIEL )](X:I:)
2 2
1 (/(udue) XY 1j oR(u) ~R(d) o M M
*mij YL 1AY YiAX m%x’mffy
2 2
C(Avud) XY 1i 4R(d) AR(e) M s 3
+ L 1AX Y jAY 7,”2~ ’mg ) ( )
dx vy
udue)ij ; ~
CIEL )](XO)
2 2
1 (udue) XY 1j nR(u) xoR(d) o [ XS TR
-—|c INMONED p [ Xa _Xa
Mo L 1Ax NViay m%X mgy
(ueud) XY 1i n-R(d) r/R(e) m??‘,k mf?%
+ Cf NEXNGYE | 52—t |, (C4)
dx vy

udue)ij j~
CRil M ()
41 (uwdue)XY1j ~L(w) ~L(d) mZ  mZ
= gmf,gCL leX Gy F mié’mzi ,(C.5)
Y
Ci Y (%) (C.6)
2 2
1 udue) XY 15 ~L(u) ~L(d M M
:—Eoé deviieysia o ol
XA ux dy
GV R)
2 2
1 udue) XY1j nL(u) A,L(d Mo M3
- o [etemrenigger (28, 22
Xa ux dy
2 2
. M=o m=y
ueud) XY 1i A-R(d R(e X X
ot (8,05 )] e
ux ey
udue)ij j~
Cii M (g)
41 (udue)XY1j ~R(u) ~R(d) mZ  mZ
=-—0C e GUVF | =& J C.8
3my R 1x Uiy m%X7m3 (C.8)
Y
Cri "7 ()
2 2
1 (udue) XY 1§ ~R(u) ~R(d) e "M%
. [_CR TCray Ciax F mgA» 2~A
Xa ux dy
2 2
C(drud) XY 1i AL(d) ~L(e) Mt M C9
+ O 1axCiavt | 2o g , (C9)
JX vy
udue)ij ; ~
CER )J(XO)
2 2
1 (udue) XY 15 5 R(u) rrR(d) Mz M3
= @ [CR INyax Niay F mgA ) mzf
A ux dy
2 2
) mzo M=o
uweud) XY 1i A-L(d L(e
+ cfreed Nl,g)zNj/igF(miﬂméf‘)], (C.10)
CTX ey
udue)ij (~
Cr " @) (C.11)
4 1 (udue)XY1j AL(u) ~L(d) mZ  mZ
RET R Sl Crenbreng
ux dy
Ch Y (75 (C.12)
2 2
- 1 (C/(udue) XY 1j L(u) AL(d) M M
77m7~+ R 1AY YiAX m2 ' m2 ’
XA ux dy
Ciii 7 (X)
2 2
1 wdue) XY 15 A7L(w) rL(d) M3 Mo
T O£ ) ]NlAXNiA(YF mgAv 2~A
XA ux dy

(ueud) XY 1i nrR(d) r7R(€) m??‘) mf?"
+ OR NlAXNjAYF m%Aa m%A ) (013)
ux ey

ddv)ijk ~
ot )

_ 2L guad )XYakGI;a;()G?’/(d)F( o My )

_3m§
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2

2 m2
n C(dduV)XY1kGR(d)G (d) B A — , (C.14)
1L 1Y m m2~
dx dy
uddv)ijk , ~
Otk ()
2 2
1 (uddv) XY jk R (M
= — _OL ! CIAY CLAXF m% ’ m2~A
%k ux dy
(ueud) XY 1i ~R(u) ~R(e) m% m%
+ C}, CiaxCray F m2 ’m72A » (C15)
dx vy
uddv)ijk ; ~
Otk (30)
2 2
1 uddv) XY jk A R(u) ArR(d M %
= of T NAX Niay F mzA’ 2
X% ux dy

2 2
m=, M,
(dduv)XY1k N R(e X X
+C ) JA(X)NiA(Y)F (mQAa %A>

2
X m=o 0
+ CﬁdVUd)XYhN;Z(?N&g?F (mXA , XA

max mDY

2 2
g mi, m2,
(uvdd) XY ji arR(u) A7R(v) X X
+ Cp leAX“kAYF< 3 2A>

uddv)ijk j~
Cl(aL i (9)

4 1 u v u 2 mg
L pluda )XYJkG%()GZLéd)F( il ) 7
rn~
ux

3mg

uddv)ijk ;~
CI(KL )id (X:I:)

1 (uddv) XY jk ~L(u) ~L(d) m% m>2~<1§
- —Cy CrayCiax F m2 ' m?2

m+ m=
A

X ux dy
(ueud)XY1i ~R(u) ~R(e) m% m%
+ CR CjAX C’kAYF m2 ' m2 ’ (C'18)
dx Vy
uddv)ijk ; ~
Cuddryik 50y (C.19)
2 2
1 uddv) XY jk A+L(u) ArL(d Mz M3
- e (1,1 ),
XA ux dy
dduv)ijk j~
Ch ) (C.20)
41 (udav mg  m3
_ **CI(J dd )XYlkGL(d)GL(d ( b ) 7
3myg ms 5
X Y
Otk (%) = o, C.21)
CR R0 (C.22)
2 2
L (ddun) XY 1k L(d) ArL(d) o [ XSG R
= @CL NiaxNjay F m%A, m2~A :
A dx dy

Here we have defined the loop function

1 _
1—z 8777

r—y

Fla,y) = =Y ( 1y10gy).(C.23)
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