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Abstract. We give an explicit formula for the proton decay rate in the minimal renormalizable super-
symmetric (SUSY) SO(10) model. In this model, the Higgs fields consist of the 10 and 126 SO(10)
representations in the Yukawa interactions with matter and of the 10, 126, 126, and 210 representations
in the Higgs potential. We present all the mass matrices for the Higgs fields contained in this minimal
SUSY SO(10) model. Finally, we discuss the threshold effects of these Higgs fields on the gauge coupling
unification.

PACS. 12.10.-g, 12.10.Dm, 12.10.Kt

1 Introduction

Proton decay would be a smoking gun signature for grand
unified theories (GUTs). Unfortunately, no such signal has
been seen. In fact, very strong experimental limits have
been set for this process, placing the minimal GUTs in a
very precarious position. SuperKamiokande (SuperK) has
set a lower limit on the proton lifetime in the channel
p → K+ν as follows:

τ(p → K+ν̄) ≥ 2.2 × 1033 years, (1)

at the 90% confidence level [1]. This has already placed
stringent constraints on SU(5). In fact, the minimal renor-
malizable SUSY SU(5) model is almost absolutely ex-
cluded [2].1 Thus realistic unified model builders must se-
riously consider the proton lifetime constraints.

Now, SO(10) GUTs have been mainly discussed in con-
nection with the neutrino oscillations since this part re-
veals the physics beyond the standard model. In this con-
nection, SO(10) GUTs have some advantages over SU(5)
GUTs. One of them is that they incorporate the right-
handed neutrinos as member of the 16 dimensional spinor
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1 If we take some textures of the mass matrices for fermions

and sfermions, we may get a safe region for the proton lifetime
in a minimal renormalizable SUSY SU(5) model [3].

representation together with the other standard model
fermions and provide a natural explanation of the small-
ness of the neutrino masses through the seesaw mecha-
nism [4]. In this paper, we consider the minimal renor-
malizable SUSY SO(10) model. This model contains two
Higgs fields, 10 and 126, in the Yukawa interactions with
matter [5,6]. This is a minimal model in the sense that
it contains only the renormalizable operators at the GUT
scale and it has minimal contents of the Higgs fields com-
patible with the low-energy experimental data. If we relax
the renormalizability at the GUT scale, the different min-
imal SO(10) models may also possibly be considered [7,
8]. In this paper, we restrict our arguments within the
renormalizable theory at the GUT scale and use the word
“minimal” in this restricted sense. As was shown in [5,
6], this theory is highly predictive. However, recent data
[9,10] showed that one of our predictions, the neutrino
mass square ratio, is out of the 3σ allowed region. How-
ever if we change very slightly the remaining parameter we
can improve the data fitting. Further, incorporating sys-
tematically and exhaustively the errors of the input data
(quark masses, CKM mixing angles etc.), we can improve
the data fitting (to within 3σ as a whole [11]) without
changing the model and the seesaw type. Therefore, the
minimal model cannot be considered invalid. However, the
development of GUTs and rich experimental data drive us
to a new stage of precision calculations. That is, we must
include not only the uncertainties of the input data but
also threshold corrections precisely. In order to investigate
the proton decay rate and the gauge coupling unification
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in a precise way, we have to determine all the mass spectra
of the Higgs fields in terms of the parameters presented in
this model. This is a very complicated task itself and is the
main motivation of this work. Even in the minimal model,
there are many free parameters. So, in a practical analysis
of the proton decay rate and also the gauge coupling uni-
fication, one has to reduce the number of free parameters.
That means that we should consider the smallest number
of Higgs contents. Thus, we introduce our Higgs system
as the simplest one,

{
10 ⊕ 126 ⊕ 126 ⊕ 210

}
. The mean-

ing of the introduction of these representations will be re-
vealed in the next section. Since our results are the general
ones for the “minimal” renormalizable SO(10) models, it
can be applicable to any parameter regions. For instance,
even if we fix the type of Yukawa couplings in the mat-
ter sector and also the Higgs potential, the result is not
unique. If we restrict the values of the parameters in the
superpotential to some restricted region, we may get the
two different types of seesaw mechanisms, type-I [5,6] or
type-II [12]. In this paper, we do not explicitly explain the
way to save the model from the proton decay rate of Su-
perK. Our main purpose in this paper is to produce all the
mass spectra of the Higgs fields including all the Clebsch–
Gordan (CG) coefficients and to propose a general for-
mulation which is applicable to any parameter choices. In
these applications, our theory might be found to be insuf-
ficient. Even if this is the case, our theory is very useful
for a more elaborate theory.

This paper is organized as follows. In Sect. 2, we give
the explicit form of the superpotential in our model. In
Sect. 3, a very brief description of the symmetry break-
ing procedure and the decomposition of the original Higgs
fields into the minimal supersymmetric standard model
(MSSM) are given. In Sect. 4, using these techniques, we
can get the mass matrices for a variety of fields, especially
for the would-be Nambu–Goldstone (NG) modes. Then
we can check that the appropriate NG modes do appear
in the mass spectra. In Sect. 5, we check the mass matrices
for the electroweak Higgs doublets and consider the condi-
tions for two Higgs doublets to remain light. In Sect. 6, we
derive the formulae for the evaluation of the proton decay
rate. In Sect. 7, we finally check the remaining mass ma-
trices and the effects of the threshold corrections on the
gauge coupling unification. In the appendices, we list all
the coefficients of dimension-five and -six operators, which
are relevant to proton decay. The applications to a more
elaborate model will be given in a separate publication.

2 Minimal SO(10) GUT

In this section, we explain the minimal renormalizable
SUSY SO(10) model. As mentioned in the introduction, it
contains two Higgs fields in the Yukawa interactions with
matter [5,6]. In the SO(10) models, the left- and right-
handed fermions in a given ith generation are assigned
to a single irreducible representation 16i ≡ Ψi. Since
16⊗16 = 10⊕120⊕126, the fermion masses are gener-
ated when the Higgs fields of the 10, 120, and 126 dimen-
sional representations develop non-vanishing vacuum ex-

pectation values (VEVs). The use of only one Higgs field,
10 in the Yukawa interactions with matter, is obviously
ruled out for the description of realistic quark and lepton
mass matrices. Furthermore, the use of the 126 dimen-
sional Higgs field has desirable properties for providing
masses of the right-handed Majorana neutrinos. Also it
was found that 10 (≡ H) and 126 (≡ ∆) are suitable for
the mass matrices since they satisfy the Georgi–Jarlskog
relation. In order to preserve supersymmetry, we must also
include the Higgs field ∆ of the 126 dimensional represen-
tation. The Higgs field Φ of the 210 dimensional represen-
tation is introduced to break the SO(10) gauge symmetry
[13] and to make the Higgs doublets included in H and ∆
mix [5]. Then the minimal Yukawa coupling becomes

WY = Y ij
10ΨiHΨj + Y ij

126Ψi∆Ψj , (2)

and the minimal Higgs superpotential is [13–15]

W = m1Φ
2 + m2∆∆ + m3H

2

+ λ1Φ
3 + λ2Φ∆∆ + λ3Φ∆H + λ4Φ∆H. (3)

The interactions of 210, 126, 126 and 10 lead to some
complexities in decomposing the GUT representations to
the MSSM and in getting the low-energy mass spectra.
Particularly, the CG coefficients corresponding to the de-
compositions of SO(10) → SU(3)C ×SU(2)L ×U(1)Y have
to be found. This problem was first attacked by Xiao-Gang
He and one of the present authors (S.M.) [16] and further
by Lee [14]. But they did not present the explicit form of
the mass matrices for a variety of Higgs fields and also
did not perform a formulation of the proton lifetime anal-
ysis. In this paper we will complete that program in the
framework of our minimal SO(10) model.

3 Symmetry breaking

In order to discuss the symmetry breaking pattern, here
we briefly summarize our conventions for the SO(10) in-
dices. The SO(10) indices α = 1, 2, · · · , 9, 0 are divided
into two parts, α = 1, 2, 3, 4 for SO(4) ∼= SU(2) × SU(2)
and α = 5, 6, 7, 8, 9, 0 for SO(6) ∼= SU(4). For the
SO(10) → SU(3)C × SU(2)L × U(1)Y decompositions it
is very useful to define a “Y diagonal basis”: 1′ = 1 + 2i,
2′ = 1− 2i, 3′ = 3+4i, 4′ = 3− 4i, 5′ = 5+6i, 6′ = 5− 6i,
7′ = 7 + 8i, 8′ = 7 − 8i, 9′ = 9 + 0i, 0′ = 9 − 0i (up to a
normalization factor, 1/

√
2). Hereafter we use this Y di-

agonal basis and omit the primes: The 10 dimensional
irreducible representation, H, is spanned by the states
α = 1, 2, · · · , 9, 0. The 210 dimensional irreducible repre-
sentation, Φ and the 126 ⊕ 126 dimensional reducible rep-
resentation ∆+∆, are spanned by the antisymmetric ten-
sors of the fourth rank (αβγδ) and the antisymmetric ten-
sors of the fifth rank (αβγδε), respectively. Here and below
the bracket (· · · ) represents the total anti-symmetrization
of the indices within the bracket.

The Higgs fields of the minimal SO(10) model contain
five directions which are singlets under SU(3)C ×SU(2)L×
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U(1)Y . The corresponding VEVs are defined by

〈Φ〉 =
3∑

i=1

φi φ̂i, 〈∆〉 = vR v̂R, 〈∆〉 = vR v̂R, (4)

where φ̂i (i = 1, 2, 3) are included in 210,

φ̂1 = − 1√
24

(1234) , (5)

φ̂2 = − 1√
72

(5678 + 5690 + 7890) , (6)

φ̂3 = − 1√
144

(1256 + 1278 + 1290

+ +3456 + 3478 + 3490) , (7)

v̂R is in 126,

v̂R =
1√
120

(13579) , (8)

and v̂R is in 126,

v̂R =
1√
120

(24680) . (9)

Notice that

φ̂i · φ̂j = δij (i, j = 1, 2, 3) ,

v̂R · v̂R = v̂R · v̂R = 0, v̂R · v̂R = 1.
(10)

Due to the D-flatness condition the absolute values of the
VEVs, vR and vR are equal,

|vR| = |vR|. (11)

Now we write down the VEV conditions which preserve
supersymmetry, with respect to the directions φ̂1, φ̂2, φ̂3,
and v̂R, respectively:

2m1φ1 + 3λ1
φ2

3

6
√

6
+ λ2

vR · vR

10
√

6
= 0, (12)

2m1φ2 + 3λ1

(
φ2

2 + φ2
3

9
√

2

)
+ λ2

vR · vR

10
√

2
= 0, (13)

2m1φ3 + 3λ1

(
φ1φ3

3
√

6
+

√
2φ2φ3

9

)
+ λ2

vR · vR

10
= 0,

(14){
m2 + λ2

(
φ1

10
√

6
+

φ2

10
√

2
+

φ3

10

)}
· vR = 0. (15)

Here we consider only the solutions with |vR| 
= 0. Elim-
inating vR · vR, φ1 and φ2 from (12)–(15), one obtains a
fourth-order equation in φ3,(

φ3 +
M2

10

){
8 φ3

3 − 15 M1φ
2
3 + 14 M2

1φ3 − 3 M3
1

+ (φ3 − M1)
2 M2

}
= 0, (16)

where

M1 ≡ 12
(

m1

λ1

)
, M2 ≡ 60

(
m2

λ2

)
. (17)

Any solution of the cubic equation in φ3 is accompanied
by the solutions

φ1 = − φ3√
6

(M2
1 − 5 φ2

3
)

(M1 − φ3)2
,

φ2 = − 1√
2

(M2
1 − 2 M1φ3 − φ2

3
)

(M1 − φ3)
, (18)

vR · vR =
5
3

(
λ1

λ2

)
φ3 (M1 − 3 φ3)

(M2
1 + φ2

3
)

(M1 − φ3)2
.

The linear term gives the solution of the fourth-order
equation (16) which is very simple, φ3 = −6

(
m2
λ2

)
.

It leads to φ1 = −√
6
(

m2
λ2

)
, φ2 = −3

√
2
(

m2
λ2

)
and√

(vR · vR) =
√

60
(

m2
λ2

)√
2
(

m1
m2

)
− 3
(

λ1
λ2

)
. This solu-

tion preserves the SU(5) symmetry. Therefore, it is physi-
cally not interesting. The cubic term solutions lead to the
true SU(3)C × SU(2)L × U(1)Y symmetry.

4 Would-be NG bosons

In order to check the number of NG modes we write down
the mass matrices for the Higgs(ino) fields which trans-
mute the non-MSSM SO(10) gauge fields into very mas-
sive gauge fields. At first, we list the quantum numbers of
the would-be NG modes under SU(3)C ×SU(2)L ×U(1)Y :
(1)
[(

3,2, 5
6

)⊕ (3,2,− 5
6

)]
,

(2)
[(

3,2,− 1
6

)⊕ (3,2, 1
6

)]
,

(3)
[(

3,1,− 2
3

)⊕ (3,1, 2
3

)]
,

(4) [(1,1, 1) ⊕ (1,1,−1)] ,
(5) [(1,1, 0)] .

The total number of NG degrees of freedom is 12 +
12 + 6 + 2 + 1 = 33. In the following subsections we give
explicit expressions for the mass matrices and check that
their determinants are zero. The mass matrices receive
contributions from the F terms in the Higgs potential.
The matrix elements of the mass matrices comprise the
CG coefficients which appear as coefficients of the triple
products of the SU(3)C × SU(2)L × U(1)Y components of
the Higgs superfields. For the calculation of the CG co-
efficients, one must first find the explicit expressions for
the SU(3)C × SU(2)L × U(1)Y components of the Higgs
superfields. The complete tables of the CG coefficients of
a more general Higgs sector are given in a separate publi-
cation [17] and we will list only the mass matrices in this
paper.

Note that the mass matrix for every irreducible repre-
sentation under SU(3)C ×SU(2)L×U(1)Y with Y 
= 0 and
the mass matrix for the corresponding complex conjugate
representation are equal up to transposition. Therefore,
only one of the two accompanied mass matrices is listed.
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Of course, when enumerating the total degrees of freedom,
one has to be careful to include all the mass eigenvalues
(472 in total). The mass matrices define the mass part
of the superpotential as a bilinear form of the fields and
corresponding complex conjugate fields. The basis for the
mass matrix is defined as a row of the fields multiplying
the mass matrix form the left.

4.1
[(

3, 2, 5
6

)⊕ (3, 2, −5
6

)]
In the basis

{
Φ

(3,2,− 5
6 )

(6,2,2) , Φ
(3,2,− 5

6 )
(10,2,2)

}
(here and hereafter

the lower indices indicate SU(4)C × SU(2)L × SU(2)R and
the upper SU(3)C ×SU(2)L ×U(1)Y in the case of double
indices), the mass matrix is written as(

2m1 − λ1φ3
6

λ1φ3

3
√

2

λ1φ3

3
√

2
2m1 + λ1φ2

3
√

2
− λ1φ3

6

)
. (19)

The determinant is indeed zero assuming the VEV condi-
tions, (12)–(15).

4.2
[(

3, 2, −1
6

)⊕ (3, 2, 1
6

)]
In the basis

{
Φ

(3,2, 1
6 )

(6,2,2) , Φ
(3,2, 1

6 )
(10,2,2), ∆

(3,2, 1
6 )

(15,2,2),∆
(3,2, 1

6 )
(15,2,2)

}
, the

mass matrix is written as
2m1 + λ1φ3

6
λ1φ3

3
√

2
− λ2vR

10
√

3
0

λ1φ3

3
√

2
2m1 + λ1φ2

3
√

2
+ λ1φ3

6

−λ2vR

5
√

6
0

(20)

0
0
0

m2 + λ2φ2

30
√

2
+ λ2φ3

60

− λ2vR

10
√

3
−λ2vR

5
√

6
m2 + λ2φ2

30
√

2
+ λ2φ3

20

0

 .

The determinant is also equal zero assuming the VEV
conditions.

4.3
[(

3, 1, −2
3

)⊕ (3, 1, 2
3

)]
In the basis

{
Φ

(3,1, 2
3 )

(15,1,1), Φ
(3,1, 2

3 )
(15,1,3),∆

(3,1, 2
3 )

(10,1,3)

}
, the mass ma-

trix is written as 2m1 + λ1φ2

3
√

2
λ1φ3

3
√

2
− λ2vR

10
√

3

λ1φ3

3
√

2
2m1 + λ1φ1√

6
+ λ1φ2

3
√

2
−λ2vR

5
√

6

(21)

− λ2vR

10
√

3
−λ2vR

5
√

6
m2 + λ2φ1

10
√

6
+ λ2φ2

30
√

2
+ λ2φ3

30

 .

The determinant is also equal zero assuming the VEV
conditions.

4.4 [(1, 1, 1) ⊕ (1, 1, −1)]

In the basis
{

Φ
(1,1,1)
(15,1,3), ∆

(1,1,1)
(10,1,3)

}
, the mass matrix is writ-

ten as(
2m1 + λ1φ1√

6
+

√
2λ1φ2

3

−λ2vR
10

−λ2vR
10

m2 + λ2φ1

10
√

6
+ λ2φ2

10
√

2

)
. (22)

The determinant is also equal zero assuming the VEV
conditions.

4.5 [(1, 1, 0)]

In the basis{
Φ

(1,1,0)
(1,1,1), Φ

(1,1,0)
(15,1,1), Φ

(1,1,0)
(15,1,3),∆

(1,1,0)
(10,1,3), ∆

(1,1,0)
(10,1,3)

}
,

the mass matrix is written as
2m1

0
λ1φ3√

6
− λ2vR

10
√

6
− λ2vR

10
√

6

0
2m1 +

√
2λ1φ2

3√
2λ1φ3

3
− λ2vR

10
√

2
− λ2vR

10
√

2

(23)

λ1φ3√
6√

2λ1φ3
3

2m1 + λ1φ1√
6

+
√

2λ1φ2
3

−λ2vR
10

−λ2vR
10

− λ2vR

10
√

6
− λ2vR

10
√

2
−λ2vR

10
e4
0

− λ2vR

10
√

6
− λ2vR

10
√

2
−λ2vR

10
0
e4

 .

Here e4 ≡ m2 +λ2

(
φ1

10
√

6
+ φ2

10
√

2
+ φ3

10

)
is nothing but the

left-hand side of (15) divided by vR, and (23) has one zero
eigenvalue.

5 Electroweak Higgs doublet

In the standard picture of the electroweak symmetry
breaking, we have the Higgs doublets which give masses
to the matter. These masses should be less than or equal
to the electroweak scale. Since we approximate the elec-
troweak scale by zero, we must impose a constraint that
the mass matrix should have one zero eigenvalue.

We define

H10
u ≡ H

(1,2, 1
2 )

(1,2,2) , ∆u ≡ ∆
(1,2, 1

2 )
(15,2,2),

∆u ≡ ∆
(1,2, 1

2 )
(15,2,2), Φu ≡ Φ

(1,2, 1
2 )

(10,2,2)
. (24)

and

H10
d ≡ H

(1,2,− 1
2 )

(1,2,2) , ∆d ≡ ∆
(1,2,− 1

2 )
(15,2,2) ,

∆d ≡ ∆
(1,2,− 1

2 )
(15,2,2) , Φd ≡ Φ

(1,2,− 1
2 )

(10,2,2) . (25)
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In the basis
{
H10

u ,∆u, ∆u, Φu

}
, the mass matrix is written

as

Mdoublet (26)

≡


2m3

λ4φ2√
10

− λ4φ3

2
√

5
−λ3φ2√

10
− λ3φ3

2
√

5
λ3vR√

5

λ3φ2√
10

− λ3φ3

2
√

5
m2 + λ2φ2

15
√

2
− λ2φ3

30

0
0

−λ4φ2√
10

− λ4φ3

2
√

5
0

m2 + λ2φ2

15
√

2
+ λ2φ3

30

−λ2vR
10

λ4vR√
5

0
−λ2vR

10
2m1 + λ1φ2√

2
+ λ1φ3

2

 .

The corresponding mass terms of the superpotential read

Wm =
(
H10

u ,∆u, ∆u, Φu

)
Mdoublet

(
H10

d , ∆d,∆d, Φd

)T
.

(27)
The requirement of the existence of a zero mode leads to
the following condition:

det Mdoublet = 0. (28)

For instance, in case of λ3 = 0, m2 + λ2φ2

15
√

2
− λ2φ3

30 = 0, we
obtain a special solution to (28), while it keeps a desirable
vacuum and it does not produce any additional massless
fields. For instance, for φ1/M1 = −0.06077, φ2/M1 =
−0.5949, φ3/M1 = 0.1238, vRvR/M2

1 = 0.1715λ1/λ2
with the condition M2/M1 = 1.930, both the condition
below (28) and (16) are satisfied. However, we proceed our
arguments hereafter without using this special solution.

We can diagonalize the mass matrix, Mdoublet, by a
bi-unitary transformation.

U∗ Mdoublet V † = diag(0, M1, M2, M3). (29)

Then the mass eigenstates are written as(
Hu, h1

u, h2
u, h3

u

)
=
(
H10

u ,∆u, ∆u, Φu

)
UT,(

Hd, h1
d, h2

d, h3
d

)
=
(
H10

d , ∆d,∆d, Φd

)
V T. (30)

The representations 45 and/or 54, and higher dimensional
operators, are not included in our minimal model. There-
fore, we must set the “doublet–triplet splittings” by hand
as (28).

By making the inverse transformation of (30), the fol-
lowing expressions are obtained:

H10
u = αuHu + · · · , H10

d = αdHd + · · · ,

∆u = βuHu + · · · , ∆d = βdHd + · · · , (31)

where “+ · · · ” represent the heavy Higgs fields, hi
u,d (i =

1, 2, 3) which are integrated out when considering the low-
energy effective superpotential.

Precisely, we can read off from (30) that

αu = (U∗)11, βu = (U∗)12,
αd = (V ∗)11, βd = (V ∗)13. (32)

Using the two pairs of Higgs doublets, H10
u,d and ∆u,d, the

Yukawa couplings of (2) are rewritten as

WY = uc
i

(
Y ij

10 H10
u + Y ij

126 ∆u

)
qj

+ dc
i

(
Y ij

10 H10
d + Y ij

126 ∆d

)
qj

+ νc
i

(
Y ij

10 H10
u − 3Y ij

126 ∆u

)
�j

+ ec
i

(
Y ij

10 H10
d − 3Y ij

126 ∆d

)
�j

+ νc
i

(
Y ij

126vR

)
νc

j . (33)

By using (31), we obtain the low-energy effective superpo-
tential which is described by only the light Higgs doublets
Hu and Hd,

Weff = uc
i

(
αuY ij

10 + βuY ij
126

)
Hu qj

+ dc
i

(
αdY

ij
10 + βdY

ij
126

)
Hd qj

+ νc
i

(
αuY ij

10 − 3βuY ij
126

)
Hu �j

+ ec
i

(
αdY

ij
10 − 3βdY

ij
126

)
Hd �j

+ νc
i

(
Y ij

126vR

)
νc

j + µeff HuHd. (34)

Here we have assumed that some mechanism, like the
Giudice–Masiero mechanism [18] in supergravity, may
produce the effective µ term, µeff , for the light Higgs dou-
blets.

6 Proton decay

After the symmetry breaking from SO(10) to SU(3)C ×
SU(2)L ×U(1)Y , the generic Yukawa interactions between
the matter fields and the color triplet Higgs fields are given
by

WY = Y ij
10 HT

(
qi�j + uc

id
c
j

)
+ Y ij

126 ∆T

(
qi�j + uc

id
c
j

)
+ Y ij

10 HT

(
1
2
qiqj + uc

ie
c
j + dc

iν
c
j

)
+ Y ij

126 ∆T

(
1
2
qiqj + uc

ie
c
j + dc

iν
c
j

)
+ Y ij

126 ∆
′
T

(
uc

ie
c
j + dc

iν
c
j

)
. (35)

Here we have defined

HT ≡ H
(3,1, 1

3 )
(6,1,1) , HT ≡ H

(3,1,− 1
3 )

(6,1,1) , ∆T ≡ ∆
(3,1, 1

3 )
(6,1,1) ,

∆T ≡ ∆
(3,1,− 1

3 )
(6,1,1) , ∆

′
T ≡ ∆

(3,1,− 1
3 )

(10,1,3) . (36)

For later use we define

∆T ≡ ∆
(3,1, 1

3 )
(6,1,1) , ∆T ≡ ∆

(3,1,− 1
3 )

(6,1,1) , ∆′
T

≡ ∆
(3,1, 1

3 )
(10,1,3)

,

ΦT ≡ Φ
(3,1, 1

3 )
(15,1,3) , ΦT ≡ Φ

(3,1,− 1
3 )

(15,1,3) . (37)
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In the basis
{

HT , ∆T ,∆T , ΦT , ∆′
T

}
, the mass matrix

reads

Mtriplet

≡


2m3

−λ3φ1√
10

− λ3φ2√
30

−λ4φ1√
10

+ λ4φ2√
30

λ3vR√
5

−
√

2λ3φ3√
15

−λ4φ1√
10

− λ4φ2√
30

m2

0
− λ2vR

10
√

3
λ2φ3

15
√

2

(38)

−λ3φ1√
10

+ λ3φ2√
30

0
m2

0
0

λ4vR√
5

− λ2vR

10
√

3
0

m44

−λ2vR

5
√

6

−
√

2λ4φ3√
15

λ2φ3

15
√

2
0

−λ2vR

5
√

6
m55

 ,

where m44 ≡ 2m1 + λ1φ1√
6

+ λ1φ2

3
√

2
+ 2λ1φ3

3 and m55 ≡
m2 + λ2φ1

10
√

6
+ λ2φ2

30
√

2
. The corresponding mass terms of the

superpotential read

Wm =
(
HT , ∆T ,∆T , ΦT , ∆′

T

)
×Mtriplet

(
HT ,∆T , ∆T , ΦT ,∆

′
T

)T
. (39)

Now we integrate out all the color triplet Higgs fields in
order to obtain the effective dimension-five operators re-
lated to the proton decay.2 We first integrate out the color
triplet Higgs fields, ∆T and ΦT ,[

∆T

ΦT

]
= − 1

D

×
[(

2m1 + λ1φ1√
6

+ λ1φ2

3
√

2
+ 2λ1φ3

3

)(
−λ3φ1√

10
+ λ3φ2√

30

)
HT

m2 · λ4vR√
5

HT − m2 · λ2vR

10
√

3
∆T − m2 · λ2vR

5
√

6
∆′

T

]
,

where

D ≡ m2 ·
(

2m1 +
λ1φ1√

6
+

λ1φ2

3
√

2
+

2λ1φ3

3

)
. (40)

Putting this into the original mass terms of the superpo-
tential (39), we can obtain the following mass terms for
the color triplet Higgs fields:

W eff
m =

(
HT , ∆T , ∆′

T

)
M eff

triplet

(
HT ,∆T ,∆

′
T

)T
. (41)

Here the explicit forms of the elements of this mass matrix,
M eff

triplet = {mij}, are given as follows:

m11 ≡ 2m3 − 1
D
[(

−λ4φ1√
10

+
λ4φ2√

30

)
2 The integration procedure presented here is equivalent to

the integration procedure after the diagonalization of the full
triplet 5 × 5 matrix.

×
(

2m1 +
λ1φ1√

6
+

λ1φ2

3
√

2
+

2λ1φ3

3

)
×
(

−λ3φ1√
10

+
λ3φ2√

30

)
+

λ3vR√
5

· m2 · λ4vR√
5

]
,

m12 ≡ −λ4φ1√
10

− λ4φ2√
30

+
1
D

λ2vR

10
√

3
· m2 · λ4vR√

5
,

m13 ≡ −
√

2λ4φ3√
15

+
1
D

λ2vR

5
√

6
· m2 · λ4vR√

5
,

m21 ≡ −λ3φ1√
10

− λ3φ2√
30

+
1
D

λ3vR√
5

· m2 · λ2vR

10
√

3
,

m22 ≡ m2 − 1
D

λ2vR

10
√

3
· m2 · λ2vR

10
√

3
,

m23 ≡ λ2φ3

15
√

2
− 1

D
λ2vR

10
√

3
· m2 · λ2vR

10
√

3
,

m31 ≡ −
√

2λ3φ3√
15

+
1
D

λ3vR√
5

· m2 · λ2vR

5
√

6
,

m32 ≡ λ2φ3

15
√

2
− 1

D
λ2vR

10
√

3
· m2 · λ2vR

5
√

6
,

m33 ≡ m2 +
λ2φ1

10
√

6
+

λ2φ2

30
√

2

− 1
D

λ2vR

5
√

6
· m2 · λ2vR

5
√

6
. (42)

Moreover, integrating out the color triplet Higgs field ∆′
T
,

we obtain the effective Yukawa interactions between the
matter fields and the color triplet Higgs fields as

WY = Y ij
10 HT

(
qi�j + uc

id
c
j

)
+ Y ij

126 ∆T

(
qi�j + uc

id
c
j

)
+ Y ij

10 HT
1
2
qiqj

+
(

Y ij
10 − m31

m33
Y ij

126

)
HT

(
uc

ie
c
j + dc

iν
c
j

)
+ Y ij

126 ∆T
1
2
qiqj

+
(

1 − m32

m33

)
Y ij

126 ∆T

(
uc

ie
c
j + dc

iν
c
j

)
. (43)

Then the effective mass terms for the remaining color
triplet Higgs fields are written as

W eff
m = HT

(
a HT + b ∆T

)
+ ∆T

(
c HT + d ∆T

)
≡ (HT , ∆T

)
MT

(
HT

∆T

)
, (44)

where a, b, c, d are defined by

a ≡ m11 − m13

m33
· m31, b ≡ m12 − m13

m33
· m32,

c ≡ m21 − m23

m33
· m31, d ≡ m22 − m23

m33
· m32. (45)

Combining (43) and (44) leads to the effective dimension-
five interactions after integrating out the remaining color
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triplet Higgs fields [19],

−W5 = Cijkl
L

1
2
qiqjqk�l + Cijkl

R uc
ie

c
ju

c
kdc

l , (46)

inducing the dangerous proton decay. Here, CL and CR
are given by the Yukawa coupling matrices at the GUT
scale, MG,

Cijkl
L (MG) =

(
Y ij

10 , Y ij
126

)
M−1

T

(
Y kl

10

Y kl
126

)
,

Cijkl
R (MG) =

(
Y ij

10 − m13

m33
Y ij

126,

(
1 − m32

m33

)
Y ij

126

)
M−1

T

×
(

Y kl
10

Y kl
126

)
. (47)

Note that (
Y10

Y126

)
=

(
αu

αd

βu

βd

)−1(
Yu

Yd

)

≡ A−1

(
Yu

Yd

)
. (48)

Thus we have

Cijkl
L =

(
Y ij

u , Y ij
d

) (
A MT AT)−1

(
Y kl

u

Y kl
d

)
. (49)

We make use of this expressions in order to evaluate the
renormalization group effects on the Wilson coefficients
Cijkl

L and Cijkl
R . Without loss of generality, we can use the

basis where Yu is real and diagonal,

Yu =
1

v sin β
diag(mu, mc, mt), (50)

with v � 174.1 GeV. Since Yd is a symmetric matrix, it
can be described by

Yd =
1

v cos β
V

∗
CKM diag(md, ms, mb) V

†
CKM, (51)

by using a unitary matrix

V CKM ≡ eiα1 eiα2λ3 eiα3λ8 VCKM eiβ2λ3 eiβ3λ8 , (52)

where λ3, λ8 are the Gell-Mann matrices and VCKM is
the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix
[20].3

The complete antisymmetry in the color indices re-
quires that the dimension-five operator (46) possesses non-
diagonal flavor indices [21]. As a consequence, the domi-
nant decay mode is p → K+ν̄. This fact implies that the
chargino dressing diagrams dominate over the gluino and
the neutralino dressing diagrams [22].

3 In [6], we set these phases αi (i = 1, 2, 3), βi (i = 2, 3) to
zero or π.

In the component form, the dimension-five operators
at the SUSY breaking scale, MSUSY, are written

L5 = C
(ũd̃ue)XY ij
L ũX d̃Y uLieLj

+ C
(ũũde)XY ij
L

1
2
ũX ũY dLieLj

+ C
(ũd̃ue)XY ij
R ũX d̃Y uRieRj

+ C
(ũũde)XY ij
R

1
2
ũX ũY dRieRj

+ C
(ũd̃dν)XY ij
L ũX d̃Y dLiνLj

+ C
(d̃d̃uν)XY ij
L

1
2
d̃X d̃Y uLiνLj

+ C
(ũẽud)XY ij
L ũX ẽY uLidLj

+ C
(d̃ẽuu)XY ij
L

1
2
d̃X ẽY uLiuLj

+ C
(ũẽud)XY ij
R ũX ẽY uRidRj

+ C
(d̃ẽuu)XY ij
R

1
2
d̃X ẽY uRiuRj

+ C
(d̃ν̃ud)XY ij
L d̃X ν̃Y uLidLj

+ C
(ũν̃dd)XY ij
L

1
2
ũX ν̃Y dLidLj . (53)

The coefficients are obtained from the coefficients of the
original dimension-five operators including their renormal-
ization from MG to MSUSY. Their explicit forms are found
in Appendix A. After the sparticle dressing, we obtain the
following type of dimension-six operators causing nucleon
decays:

L6 =
1

16π2

[
C

(udue)ij
LL (uLdLi)(uLeLj)

+ C
(udue)ij
RL (uRdRi)(uLeLj)

+ C
(udue)ij
LR (uLdLi)(uReRj)

+ C
(udue)ij
RR (uRdRi)(uReRj)

+ C
(uddν)ijk
LL (uLdLi)(dLjνLk)

+ C
(uddν)ijk
RL (uRdRi)(dLjνLk)

+ C
(dduν)ijk
RL

1
2
(dRidRj)(uLνLk)

]
. (54)

These operators should be renormalized from MSUSY
to MZ and further to the hadronization scale (µhad)
≈ 1 GeV. Then the effective four-Fermi Lagrangian is
converted to a hadronic Lagrangian by using the chiral
Lagrangian method [23][24]. Details are given in Appen-
dices B and C.

For the decay mode p → K+ν̄i, the partial decay rate
is given by the formula

Γ (p → K+ν̄i) =
mp

32π

(
1 − m2

K+

m2
p

)2
1

fπ
2 |A(p → K+ν̄i)|2.

(55)
Here mp = 0.938 GeV is the proton mass, mK+ =
0.493 GeV is the kaon mass and fπ = 0.131 GeV is the
pion decay constant.
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The amplitude A(p → K+ν̄i) for p → K+ν̄i reads [25]

A(p → K+ν̄i) =
[
βC

(uddν)21i
LL + αC

(uddν)21i
RL

] 2mp

3mB
D

+
[
βC

(uddν)12i
LL + αC

(uddν)12i
RL

] [
1 +

mp

3mB
(3F + D)

]
+ αC

(dduν)12i
RL

[
1 − mp

3mB
(3F − D)

]
. (56)

Here mB = 1.150 GeV is an averaged baryon mass, F =
0.44, D = 0.81 are the parameters in terms of which the
octet-baryon axial-vector form factors are expressed, and
α, β are the hadron matrix elements which are defined by
[26]

αuL(k) = 〈0|dRuRuL|p(k)〉,
βuL(k) = 〈0|dLuLuR|p(k)〉. (57)

The uL(k) denote the left-handed components of the pro-
ton wave function. It is known that |α| = |β|, and β is in
the range [26]

0.003 GeV3 ≤ β ≤ 0.03 GeV3. (58)

From recent lattice calculations, one group reported that
[27]

α = −(0.015 ± 0.001) GeV3,

β = 0.014 ± 0.001 GeV3. (59)

But the other group reported the smaller values [28]

α = −(0.006 ± 0.001) GeV3,

β = 0.007 ± 0.001 GeV3. (60)

A detailed numerical analysis of the proton decay rate is
given in [29].

7 Gauge coupling unification

In general, the gauge coupling unification imposes con-
straints on the mass spectrum of many varieties of Higgs
fields [30]. Our strategy is a generic one in that all of the
dimensionless coefficients should remain of order one to
preserve the perturbative limit and put all the VEVs at
the GUT scale in order to realize the simple gauge cou-
pling unification picture. For the numerical evaluation, we
use the one-loop renormalization group equations (RGEs)
in the DR scheme [31],45

1
αi (MG)

=
1

αi (MZ)

∣∣∣∣
MS

− C2 (Gi)
12π

(61)

4 DR uses dimensional regularization through dimensional
reduction with modified minimal subtraction.

5 Here we assume, for simplicity, that all the mass eigenvalues
of the Higgs fields are smaller than MG and all the masses of
the gauge fields lie around MG. In the other cases, the formula
becomes quite complicated.

+
1
2π

bi log
(

MZ

MG

)
+
∑

ζ

bζ
i log

(
det′ Mζ

M
rank(Mζ)
G

) ,

where C2 is the quadratic Casimir operator; C2 (SU(3)) =
3, C2 (SU(2)) = 2, C2 (U(1)) = 0, and ζ denotes the
Higgs fields which have the corresponding gauge quan-
tum numbers. Mζ is its mass matrix and “det′” means
that the determinant should be taken excluding the zero
modes. bi and bζ

i are the β function coefficients; b3 = −3,
b2 = 1, b1 = 33

5 , and bζ
i are given in Tables 1 and 2. For

αi (MZ) |MS, we use the following values:

α3 (MZ) |MS = αs (MZ) , (62)

α2 (MZ) |MS = α (MZ) / sin2 θW (MZ) , (63)

α1 (MZ) |MS =
5
3

α (MZ) /
(
1 − sin2 θW (MZ)

)
, (64)

with [32]

αs (MZ) = 0.1172, α (MZ) = 1/128.92,

sin2 θW (MZ) = 0.23113. (65)

Excluding the fields which mix with the would-be NG
fields and the fields with SU(3)C × SU(2)L × U(1)Y quan-
tum numbers,

[(
1,2, 1

2

)
+ h.c.

]
and
[(

3, 1, 1
3

)
+ h.c.

]
, the

massive fields are given as follows.
For the 126 and 126 representation fields, their quan-

tum numbers, the masses and their β function coefficients
are given in Table 1.

For the 210 representation field, their quantum num-
bers, the masses and their β function coefficients are given
in Table 2.

Putting these values into (61), the unification condi-
tion produces two individual equations,

α3 (MG) = α2 (MG) , (66)

and
α3 (MG) = α1 (MG) . (67)

Setting all VEVs at the GUT scale, φ1 ∼ φ2 ∼ φ3 ∼
|vR| ∼ MG, and the remaining dimensionless coefficients
of order one; we can search whether (66) and (67) have a
solution for MG below the Planck scale, MG ≤ MPlanck.
If such a solution exists, it would limit the parameters in
the superpotential (3) to some restricted region.

8 Conclusion

We find the general formulation for the proton decay rate
in the minimal renormalizable SUSY SO(10) models. Us-
ing this generic formulation one can find whether the mini-
mal SUSY SO(10) grand unified theory has been excluded.

Recently, using their Yukawa couplings ((8) and (9)
in [33]), Goh–Mohapatra–Nasri–Ng obtained the allowed
region of (x, y, z) which corresponds to

(
a
d ,− b

d ,− c
d

)
in

our notation. However, they did not discuss the concrete
form of the superpotential and, therefore, compatibilities
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Table 1. The mass matrices and the β function coefficients for 126 and 126

quantum numbers mass matrices, or mass eigenvalues bζ
3 bζ

2 bζ
1(

8,2, 1
2

)
+ h.c.

(
m2 − λ2φ2

30
√

2
− λ2φ3

60

0
0

m2 − λ2φ2
30

√
2

+ λ2φ3
60

)
12 8 24

5(
6,3, 1

3

)
+ h.c. m2 − λ2φ1

10
√

6
− λ2φ2

30
√

2
15 24 12

5(
6,1, 4

3

)
+ h.c. m2 + λ2φ1

10
√

6
− λ2φ2

30
√

2
− λ2φ3

30 5 0 64
5(

6,1, 2
3

)
+ h.c. m2 + λ2φ1

10
√

6
− λ2φ2

30
√

2
+ λ2φ3

30 5 0 16
5(

6,1, 1
3

)
+ h.c. m2 + λ2φ1

10
√

6
− λ2φ2

30
√

2
5 0 4

5(
3,3, 1

3

)
+ h.c. m2 − λ2φ1

10
√

6
+ λ2φ2

30
√

2
3 12 6

5(
3,2, 7

6

)
+ h.c.

(
m2 + λ2φ2

30
√

2
− λ2φ3

60

0
0

m2 + λ2φ2
30

√
2

− λ2φ3
20

)
2 3 49

5(
3,1, 4

3

)
+ h.c. m2 + λ2φ1

10
√

6
+ λ2φ2

30
√

2
− λ2φ3

30 1 0 32
5

(1,3, 1) + h.c. m2 − λ2φ1
10

√
6

+ λ2φ2
10

√
2

0 4 18
5

(1,1, 2) + h.c. m2 + λ2φ1
10

√
6

+ λ2φ2
10

√
2

− λ2φ3
10 0 0 24

5

Table 2. The mass matrices and the β function coefficients for 210

quantum numbers mass matrices, or mass eigenvalues bζ
3 bζ

2 bζ
1

(8,3, 0) 2m1 − λ1φ1√
6

− λ1φ2
3
√

2
9 16 0

(8,1, 1) + h.c. 2m1 + λ1φ1√
6

− λ1φ2
3
√

2
6 0 48

5

(8,1, 0)

(
2m1 − λ1φ2

3
√

2
λ1φ3
3
√

2

λ1φ3
3
√

2

2m1 + λ1φ1√
6

− λ1φ2
3
√

2

)
3 0 0(

6,2, 5
6

)
+ h.c. 2m1 − λ1φ2

3
√

2
− λ1φ3

6 10 6 10(
6,2, 1

6

)
+ h.c. 2m1 − λ1φ2

3
√

2
+ λ1φ3

6 10 6 2
5(

3,3, 2
3

)
+ h.c. 2m1 − λ1φ1√

6
+ λ1φ2

3
√

2
3 12 24

5(
3,1, 5

3

)
+ h.c. 2m1 + λ1φ1√

6
+ λ1φ2

3
√

2
− 2λ1φ3

3 1 0 10

(1,3, 0) 2m1 − λ1φ1√
6

+
√

2λ1φ2
3 0 2 0(

1,2, 3
2

)
+ h.c. 2m1 + λ1φ2√

2
− λ1φ3

2 0 1 27
5

of their superpotential with the other constraints are not
clear in their paper. Also, as we have mentioned above,
there appears a non-zero x value even without the 54 di-
mensional Higgs field. Further, besides the color triplet
Higgs fields, there is a much richer Higgs particle con-
tents. These additional Higgs fields may cause a pathology
of the gauge coupling unification. This paper presents a
relationship among these comprehensive but tightly con-
nected problems.
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Appendix A: Dimension-five operators

In this appendix, we list the explicit form of the various
interaction coefficients.

We use the following notation for the mixing matri-
ces which diagonalize the squark, slepton mass-squared
matrices and chargino, neutralino mass matrices. Squark,
slepton mass-squared matrix M2

f̃
, chargino and neutralino

mass matrices MC and MN are diagonalized by the uni-
tary matrices Uf̃ , OL, OR and ON , respectively. We have

f̃ M2
f̃

U†
f̃
diag(m2

f̃1
, ...., m2

f̃6
),

OR MC O†
Ldiag(mχ̃−

1
, mχ̃−

2
),

O∗
N MN O†

Ndiag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
). (A.1)

For the dimension-five operators, we have the following
expressions:6

C
(ũd̃ue)XY ij
L ≡ C

[ijk]l
L (U∗

ũ)Xk(U∗
d̃
)Y l, (A.2)

6 We use a notation for an antisymmetric tensor, A[ijk]l ≡
Aijkl − Akjil.
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C
(ũũde)XY ij
L ≡ C

[kjl]m
L (U∗

ũ)Xk(U∗
ũ)Y l(VCKM)im, (A.3)

C
(ũd̃ue)XY ij
R ≡ (C∗klji

R − C∗iljk
R )(U∗

ũ)X,k+3(U∗
d̃
)Y,l+3,(A.4)

C
(ũũde)XY ij
R ≡ (C∗klji

R − C∗iljk
R )(U∗

ũ)X,k+3(U∗
ũ)Y,l+3,(A.5)

C
(ũd̃dν)XY ij
L ≡ (Cmnkl

L − Clknm
L )(U∗

ũ)Xk(U∗
d̃
)Y l

× (VCKM)im(UMNS)jn, (A.6)

C
(d̃d̃uν)XY ij
L ≡ (Clnik

L − Cknil
L )(U∗

d̃
)Xk(U∗

d̃
)Y l(UMNS)jn,

(A.7)

C
(ũẽud)XY ij
L ≡ C

[kli]m
L (U∗

ũ)Xk(U∗
ẽ )Y l(VCKM)jm, (A.8)

C
(d̃ẽuu)XY ij
L ≡ C

[ilj]k
L (U∗

d̃
)Xk(U∗

ẽ )Y l, (A.9)

C
(ũẽud)XY ij
R ≡ (C∗jkli

R − C∗kjli
R )(U∗

ũ)X,k+3(U∗
ẽ )Y,l+3,

(A.10)

C
(d̃ẽuu)XY ij
R ≡ (C∗jkli

R − C∗iklj
R )(U∗

d̃
)X,k+3(U∗

ẽ )Y,l+3,

(A.11)

C
(d̃ν̃ud)XY ij
L ≡ (Cklim

L − Cmlik
L )(U∗

d̃
)Xk(U∗

ν̃ )Y l(VCKM)jm,

(A.12)

C
(ũν̃dd)XY ij
L ≡ (Cnlkm

L − Cmlkn
L )(U∗

ũ)Xk(U∗
ν̃ )Y l(VCKM)im

× (VCKM)jn. (A.13)

In (A.6) and (A.7), it should be noticed that the neutri-
nos in the final states should be rotated from the flavor
eigenstates to the mass eigenstates by using the Maki–
Nakagawa–Sakata (MNS) mixing matrix [36], UMNS.

Appendix B: Sparticles interactions

We use the following notation for the quark–gluino–
squark, quark (lepton)–chargino–squark (slepton) and
quark (lepton)–neutralino–squark (slepton) interactions.
(1) quark–gluino–squark interactions:

Lint = −i
√

2uc
i

[
G

L(u)
iX PL + G

R(u)
iX PR

]
g̃ũX

− i
√

2dc
i

[
G

L(d)
iX PL + G

R(d)
iX PR

]
g̃d̃X + h.c. (B.1)

(2) quark (lepton)–chargino–squark (slepton) interactions:

Lint = uc
i

[
C

L(u)
iAX PL + C

R(u)
iAX PR

]
χ̃+

Ad̃X

+ dc
i

[
C

L(d)
iAXPL + C

R(d)
iAX PR

]
χ̃+

AũX + νc
i C

R(ν)
iAX PRχ̃+

AẽX

+ ec
i

[
C

L(e)
iAXPL + C

R(e)
iAX PR

]
χ̃+

Aν̃X + h.c. (B.2)

(3) quark (lepton)–neutralino–squark (slepton) interac-
tions:

Lint = uc
i

[
N

L(u)
iAX PL + N

R(u)
iAX PR

]
χ̃0

AũX

+ dc
i

[
N

L(d)
iAX PL + N

R(d)
iAX PR

]
χ̃0

Ad̃X + νc
i N

R(ν)
iAX PRχ̃0

Aν̃X

+ ec
i

[
N

L(e)
iAXPL + N

R(e)
iAX PR

]
χ̃0

AẽX + h.c. (B.3)

Explicitly, we have the following expressions:

G
L(u)
iX ≡ g3(U∗

ũ)X,i+3, (B.4)

G
R(u)
iX ≡ g3(U∗

ũ)Xi, (B.5)

G
L(d)
iX ≡ g3(U∗

d̃
)X,i+3, (B.6)

G
R(d)
iX ≡ g3(U∗

d̃
)Xk(V ∗

CKM)ik, (B.7)

C
L(u)
iAX ≡ g

mui√
2MW sin β

(O∗
R)A2(U∗

d̃
)Xi, (B.8)

C
R(u)
iAX ≡ g

{−(O∗
L)A1(U∗

d̃
)Xi

+
mdi√

2MW cos β
(O∗

L)A2(U∗
ũ)X,i+3

}
, (B.9)

C
L(d)
iAX ≡ g

mdi√
2MW cos β

(O∗
L)A2(U∗

ũ)Xi, (B.10)

C
R(d)
iAX ≡ g {−(O∗

R)A1(U∗
ũ)Xk (B.11)

+
muk√

2MW sin β
(O∗

R)A2(U∗
ũ)X,k+3

}
(V ∗

CKM)ik,

C
R(ν)
iAX ≡ g

{−(O∗
L)A1(U∗

d̃
)Xk (B.12)

+
mek√

2MW cos β
(O∗

L)A2(U∗
ν̃ )X,k+3

}
(U∗

MNS)ik,

C
L(e)
iAX ≡ g

mei√
2MW cos β

(O∗
L)A2(U∗

ν̃ )Xi, (B.13)

C
R(e)
iAX ≡ −g {−(O∗

R)A1(U∗
ν̃ )Xk (B.14)

+
muk√

2MW sin β
(O∗

R)A2(U∗
ũ)X,k+3

}
(V ∗

CKM)ik,

N
L(u)
iAX ≡ − g√

2

{
mui

MW sin β
(O∗

N )A4(U∗
ũ)Xi

− 4
3

tan θW(O∗
N )A1(U∗

ũ)X,i+3

}
, (B.15)

N
R(u)
iAX ≡ − g√

2

{
mui

MW sin β
(O∗

N )A4(U∗
ũ)X,i+3 (B.16)

+
[
(O∗

N )A2 +
1
3

tan θW(O∗
N )A1

]
(U∗

ũ)Xi

}
,

N
L(d)
iAX ≡ − g√

2

{
mdi

MW cos β
(O∗

N )A3(U∗
d̃
)Xi

+
2
3

tan θW(O∗
N )A1(U∗

d̃
)X,i+3

}
, (B.17)
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N
R(d)
iAX ≡ − g√

2

{
mdk

MW cos β
(O∗

N )A3(U∗
d̃
)X,k+3

+
[
−(O∗

N )A2 +
1
3

tan θW(O∗
N )A1

]
(U∗

d̃
)Xk

}
× (V ∗

CKM)ik, (B.18)

N
R(ν)
iAX ≡ − g√

2
[(O∗

N )A2 − tan θW(O∗
N )A1]

× (U∗
ν̃ )X,k(U∗

MNS)ik, (B.19)

N
L(e)
iAX ≡ − g√

2

{
mei

MW cos β
(O∗

N )A3(U∗
ẽ )Xi

+
2
3

tan θW(O∗
N )A1(U∗

ẽ )X,i+3

}
, (B.20)

N
R(e)
iAX ≡ − g√

2

{
mei

MW cos β
(O∗

N )A3(U∗
ẽ )X,i+3 (B.21)

+
[
−(O∗

N )A2 +
1
3

tan θW(O∗
N )A1

]
(U∗

ẽ )Xi

}
.

These expressions are found in [37], but only for the quark
sector. So here we write them explicitly.

Appendix C: Dimension-six operators

For the dimension-six operator, we divide the coefficients
into three parts according to the dressed sparticles,

C
(udue)ij
LL = C

(udue)ij
LL (g̃) + C

(udue)ij
LL (χ̃0) + C

(udue)ij
LL (χ̃±),

(C.1)

etc. Then we have the following expressions. These ex-
pressions have the same forms as [25]. However, ours are
different from them in the neutrino sector as was men-
tioned in the end of Appendix A. We have

C
(udue)ij
LL (g̃) (C.2)

=
4
3

1
mg̃

, C
(udue)XY 1j
L G

R(u)
1X G

R(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
,

C
(udue)ij
LL (χ̃±)

=
1

mχ̃+
A

[
−C

(udue)XY 1j
L C

R(u)
1AY C

R(d)
iAX F

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)

+ C
(dνud)XY 1i
L C

R(d)
1AXC

R(e)
jAY F

(
m2

χ̃+
A

m2
d̃X

,
m2

χ̃+
A

m2
ν̃Y

)]
, (C.3)

C
(udue)ij
LL (χ̃0)

=
1

mχ̃0
A

[
C

(udue)XY 1j
L N

R(u)
1AX N

R(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(ueud)XY 1i
L N

R(d)
1AXN

R(e)
jAY F

(
m2

χ̃0
A

m2
d̃X

,
m2

χ̃0
A

m2
ν̃Y

)]
, (C.4)

C
(udue)ij
RL (g̃)

=
4
3

1
mg̃

C
(udue)XY 1j
L G

L(u)
1X G

L(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
, (C.5)

C
(udue)ij
RL (χ̃±) (C.6)

= − 1
mχ̃+

A

C
(udue)XY 1j
L C

L(u)
1AY C

L(d)
iAXF

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)
,

C
(udue)ij
RL (χ̃0)

=
1

mχ̃0
A

[
C

(udue)XY 1j
L N

L(u)
1AXN

L(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(ueud)XY 1i
R N

R(d)
1AXN

R(e)
jAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
ẽY

)]
, (C.7)

C
(udue)ij
LR (g̃)

=
4
3

1
mg̃

C
(udue)XY 1j
R G

R(u)
1X G

R(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
,(C.8)

C
(udue)ij
LR (χ̃±)

=
1

mχ̃+
A

[
−C

(udue)XY 1j
R C

R(u)
1AY C

R(d)
iAX F

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)

+ C
(dνud)XY 1i
L C

L(d)
1AXC

L(e)
jAY F

(
m2

χ̃+
A

m2
d̃X

,
m2

χ̃+
A

m2
ν̃Y

)]
, (C.9)

C
(udue)ij
LR (χ̃0)

=
1

mχ̃0
A

[
C

(udue)XY 1j
R N

R(u)
1AX N

R(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(ueud)XY 1i
L N

L(d)
1AXN

L(e)
jAY F

(
m2

χ̃0
A

m2
d̃X

,
m2

χ̃0
A

m2
ẽY

)]
, (C.10)

C
(udue)ij
RR (g̃) (C.11)

=
4
3

1
mg̃

C
(udue)XY 1j
R G

L(u)
1X G

L(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
,

C
(udue)ij
RR (χ̃±) (C.12)

= − 1
mχ̃+

A

C
(udue)XY 1j
R C

L(u)
1AY C

L(d)
iAXF

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)
,

C
(udue)ij
RR (χ̃0)

=
1

mχ̃0
A

[
C

(udue)XY 1j
L N

L(u)
1AXN

L(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(ueud)XY 1i
R N

R(d)
1AXN

R(e)
jAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
ẽY

)]
, (C.13)

C
(uddν)ijk
LL (g̃)

=
4
3

1
mg̃

[
C

(uddν)XY jk
L G

R(u)
1X G

R(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
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+ C
(dduν)XY 1k
L G

R(d)
jX G

R(d)
iY F

(
m2

g̃

m2
d̃X

,
m2

g̃

m2
d̃Y

)]
, (C.14)

C
(uddν)ijk
LL (χ̃±)

=
1

mχ̃+
A

[
−C

(uddν)XY jk
L C

R(u)
1AY C

R(d)
iAX F

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)

+ C
(ueud)XY 1i
L C

R(u)
jAX C

R(e)
kAY F

(
m2

χ̃+
A

m2
d̃X

,
m2

χ̃+
A

m2
ν̃Y

)]
, (C.15)

C
(uddν)ijk
LL (χ̃0)

=
1

mχ̃0
A

[
C

(uddν)XY jk
L N

R(u)
1AX N

R(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(dduν)XY 1k
L N

R(d)
jAX N

R(e)
iAY F

(
m2

χ̃0
A

m2
d̃X

,
m2

χ̃0
A

m2
d̃Y

)

+ C
(dνud)XY 1i
L N

R(d)
jAX N

R(e)
kAY F

(
m2

χ̃0
A

m2
d̃X

,
m2

χ̃0
A

m2
ν̃Y

)

+ C
(uνdd)XY ji
L N

R(u)
1AX N

R(ν)
kAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
ν̃Y

)]
, (C.16)

C
(uddν)ijk
RL (g̃) (C.17)

=
4
3

1
mg̃

C
(uddν)XY jk
L G

L(u)
1X G

L(d)
iY F

(
m2

g̃

m2
ũX

,
m2

g̃

m2
d̃Y

)
,

C
(uddν)ijk
RL (χ̃±)

=
1

mχ̃+
A

[
−C

(uddν)XY jk
L C

L(u)
1AY C

L(d)
iAXF

(
m2

χ̃+
A

m2
ũX

,
m2

χ̃+
A

m2
d̃Y

)

+ C
(ueud)XY 1i
R C

R(u)
jAX C

R(e)
kAY F

(
m2

χ̃+
A

m2
d̃X

,
m2

χ̃+
A

m2
ν̃Y

)]
, (C.18)

C
(uddν)ijk
RL (χ̃0) (C.19)

=
1

mχ̃0
A

C
(uddν)XY jk
L N

L(u)
1AXN

L(d)
iAY F

(
m2

χ̃0
A

m2
ũX

,
m2

χ̃0
A

m2
d̃Y

)
,

C
(dduν)ijk
RL (g̃) (C.20)

=
4
3

1
mg̃

C
(uddν)XY 1k
L G

L(d)
iX G

L(d)
jY F

(
m2

g̃

m2
d̃X

,
m2

g̃

m2
d̃Y

)
,

C
(dduν)ijk
RL (χ̃±) = 0, (C.21)

C
(dduν)ijk
RL (χ̃0) (C.22)

=
1

mχ̃0
A

C
(dduν)XY 1k
L N

L(d)
iAX N

L(d)
jAY F

(
m2

χ̃0
A

m2
d̃X

,
m2

χ̃0
A

m2
d̃Y

)
.

Here we have defined the loop function

F (x, y) ≡ x y

x − y

(
1

1 − x
log x − 1

1 − y
log y

)
. (C.23)
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